
Master research Internship

Internship report

Speculative High-Level Synthesis of Instruction Set Processors

Hardware Architecture

Author:
Jean-Michel Gorius

Supervisors:
Steven Derrien
Simon Rokicki

CAIRN

Abstract: In the embedded and IoT spaces, typical computing scenarios traditionally involve
processing large quantities of data in regular patterns. However, the trend in specialized compu-
tational domains is slowly shifting. New applications such as data mining, graph analytics, and
machine learning introduce a new computational framework that requires special-purpose hardware
to provide a programmable interface and to operate on control-flow-dominated workloads. These
workloads are well-suited for customized Instruction Set Processors, but the design of these complex
hardware pieces is costly and very error-prone. We studied how to take advantage of state-of-the-art
work on speculative hardware synthesis during this internship to make Instruction Set Processor
design amenable to High-Level Synthesis flows. We looked at the challenges induced by inter-
winding multiple speculations and explored fine-grain misspeculation recovery schemes, directing
our efforts towards small embedded processors based on in-order pipelined architectures. This re-
port introduces the internship’s context and discusses our approach to extending Speculative Loop
Pipelining to synthesize processor micro-architectures from a high-level behavioral description.

Contents

1 Introduction 1

2 Motivation and Background 1
2.1 Customizing Instruction Set Processors . 2
2.2 High-Level Synthesis . 3
2.3 Loop Pipelining and Static Scheduling . 4
2.4 The Need for Speculation . 6

3 Synthesizing Speculative Hardware 6
3.1 Dynamic Scheduling: A First Step Towards Speculative Execution 7
3.2 Speculative Execution . 9
3.3 Speculatively Scheduled Hardware Synthesis . 9

4 Instruction Set Processor Synthesis 13
4.1 Instruction Set Simulators . 14
4.2 Speculative Processor Structure . 15

5 Handling Multiple Speculations 17
5.1 Fusing Multiple Speculation Paths . 18
5.2 Multi-Conditional Speculations . 20
5.3 Chained Speculations . 23
5.4 Optimizations . 24

6 Conclusion and Future Work 26

1 Introduction

Spearheaded by the personal computer’s advent and the rapid development of microprocessor tech-
nology, the computing revolution has profoundly transformed our society and the way we interact
with the world. Nowadays, computing devices have become omnipresent: from high-performance
multi-core machines in high-end servers to small, low-power embedded devices in wearable prod-
ucts, computers are everywhere. The Internet of Things (IoT) opens many new opportunities for
digital products and applications but comes with its own set of challenges for computer designers:
devices are expected to handle increasingly large computational workloads while enforcing stringent
cost and energy efficiency. The vast majority of IoT platforms rely on low-power Micro-Controller
Unit (MCU) families supporting the same Instruction Set Architecture (ISA), e.g., ARM. Different
MCUs in the same family expose a wide variety of energy to performance tradeoffs thanks to dis-
tinct micro-architectures. Product designers can choose from the available processor designs that
best suit their application domain, considering price, energy, and performance constraints.

Most existing MCUs rely on proprietary ISAs, which prevent third parties from freely imple-
menting their customized micro-architecture or deviate from a standardized ISA, thereby hindering
innovation. The RISC-V 1 initiative is an effort to address this issue by developing and promoting
an open instruction set architecture with its own set of tools. The RISC-V ecosystem is quickly
growing and has gained much traction from IoT platform designers, as it permits free customization
of both the ISA and the micro-architecture.

The ever-growing success of RISC-V highlights the need for customization in today’s digital
landscape. With the approaching end of Moore’s Law and Dennard Scaling, designers need to
consider alternatives to well-established proprietary ISAs as the demand for specialized Instruction
Set Processors (ISP) continues to rise. This report exposes our work on the automatic synthesis
of custom pipelined processor cores from a high-level behavioral specification. The remainder of
this report is organized as follows. Section 2 illustrates the motivation and background behind our
work. Section 3 gives an overview of state-of-the-art techniques for the synthesis of speculative
hardware, and Section 4 focuses on applying and extending those techniques for the synthesis of
ISPs. Section 5 discusses one of the main challenges that we encountered during our work on
processor core synthesis, namely the proper handling of multiple intertwined speculations. Finally,
Section 6 concludes this report and discusses some preliminary reflections on upcoming work.

2 Motivation and Background

The problem of customizing and retargeting compilers to a new instruction set extension has been
widely studied in the late 1990s, and modern compiler infrastructures such as LLVM [Lattner and
Adve, 2004] now offer many facilities for this purpose. However, the problem of automatically
synthesizing micro-architectures has received much less attention. Although several tools exist for
this purpose [Cloutier and Thomas, 1993,Klemm et al., 2007], they are based on low-level structural
models of the underlying hardware pipeline. They are not fundamentally different from Hardware
Description Language (HDL) based approaches: the processor datapath pipeline organization must
be explicit, and hazard management is still left to the designer.

In the meantime, High-Level Synthesis (HLS) technologies, which compile C/C++ code directly
to hardware circuits, have continuously improved. Several recent research results have shown that

1https://www.riscv.org

1

https://www.riscv.org

Figure 1: Micro-architectural design space.

HLS techniques could be extended to synthesize efficient speculative hardware structures [Derrien
et al., 2020, Josipović et al., 2019]. In particular, speculative loop pipelining [Derrien et al., 2020]
appears as a promising approach as it can handle both contr-flow and memory speculations within
a classical HLS framework.

In this section, we start by presenting early work on customizing instruction set processors in
the context of Application-Specific Instruction Set Processors (ASIP) in Section 2.1 before giving
an overview of the fundamental principles of High-Level Synthesis in Section 2.2. Section 2.3 then
focuses on two key aspects of modern HLS flows, namely loop pipelining and static scheduling.
Finally, Section 2.4 highlights a few limitations of modern HLS tools for the design and synthesis
of ISPs and emphasizes the need for speculative scheduling to generate efficient processor cores.

2.1 Customizing Instruction Set Processors

Instruction Set Processors are intricate pieces of hardware designed to execute a stream of instruc-
tions stored in external memory. These processors offer a highly flexible programming interface,
making them well suited for highly irregular and heterogeneous workloads. Irregular workloads
are inherent to desktop, mobile, and high-performance computing, where most applications are
control-dominated. On the other hand, in the embedded and IoT spaces, typical computing sce-
narios traditionally involve little variability and control but focus on processing large quantities of
data. Instead of targeting programmability and flexibility, special-purpose hardware is designed
to reduce power consumption and increase performance on a single well-defined set of applications
(e.g., signal processing, video encoding and decoding). However, the trend in specialized compu-
tational domains is slowly shifting. New applications such as data mining, graph analytics, and
machine learning introduce new computational needs that require special-purpose hardware to pro-
vide a programmable interface and to operate on control-flow-dominated workloads. Addressing
these new requirements challenges hardware manufacturers to design programmable hardware with
many custom features while still providing fast processing times and reduced energy consump-
tion. However, the design of ISPs is a tedious and error-prone process that needs to be conducted
carefully to prevent the hardware from misbehaving once it is produced.

A single instruction set specification can be used to design a wide variety of ISPs. Figure 1
illustrates some of the different design choices that can be made for the same ISA. This design
landscape spans from very low-power devices based on low-energy micro-coded micro-architectures

2

to high-performance Out-of-Order (OoO) processors. Pipelined designs based on single-issue or
multiple-issue in-order pipelines are also widespread in connected devices. This implementation
diversity leads to an ample design space encompassing tradeoffs between die area, power consump-
tion, and performance. The inherent complexity of design space exploration makes it a good target
for design automation.

The first approaches aimed at automating the design of ISPs were proposed in the context
of Application-Specific Instruction Set Processor (ASIP) design flows. ASIPs are programmable
processing cores targeting a particular application domain. As a result of their specialized nature,
the ISA of ASIPs is tailored to the application, exposing specially-crafted instructions and focusing
on a small set of tasks. Proposed approaches for automated ASIP design often rely on Domain-
Specific Languages (DSL) to model the processor hardware structure along with its ISA [Cloutier
and Thomas, 1993,Huang and Despain, 1993,Klemm et al., 2007]. The abstraction level provided
by ASIP synthesis tools is often very close to Hardware Description Languages (HDL) and asks
for explicit management of architectural choices such as pipeline depth and organization, available
data forwarding points, and hazard detection logic. We aim at raising the level of abstraction at
which designers can specify the working of their desired processor, moving away from a structural
description to an entirely behavioral one.

2.2 High-Level Synthesis

High-Level Synthesis (HLS) was first proposed to overcome the many limitations of HDL-based
design flows. In an HDL-based design flow, the hardware generated by the HDL synthesis tool may
not always meet the designer’s constraints. In such a case, large parts of the specification need to
be rewritten, which is impractical. Contrary to HDL-based hardware synthesis, HLS allows its user
to specify the behavior of a given piece of hardware in a high-level language—often C or C++—and
to focus on the algorithmic specification of the hardware’s operation. An HLS toolchain infers the
hardware’s structure from this high-level description and the required resources and clock frequency
constraints. This approach abstracts the user away from most implementation details and makes
changes to the hardware easier to apply, significantly improving the designer’s ability to conduct
design space exploration.

High-Level Synthesis tools are developed both in academia and by major Electronic Design
Automation (EDA) vendors. Commercial tools include Xilinx’ Vivado HLS2 and Mentor Graphics’
Catapult HLS3, both based on C/C++. These tools extend the language with implicit semantics
and restrict the set of language features that can be used to describe hardware behavior. Most
notably, HLS introduces strong restrictions on dynamic memory management and global variables
and providing only limited support for pointer arithmetic.

Let us consider an example to get a better feeling for the actual work carried out by an HLS
toolchain. Figure 2a shows sample code that we could write in a typical C-based HLS tool to
describe a data-processing accelerator. We will use this example as an illustration throughout this
report. Given such an algorithmic specification, an HLS tool will produce hardware in the form of a
finite state machine controlling a datapath. Our example code can be processed to produce various
hardware layouts depending on the designer’s constraints, such as the type of components to use
or the target clock frequency. By default, High-Level Synthesis generates a circuit executing one

2https://www.xilinx.com/products/design-tools/vivado.html
3https://www.mentor.com/hls-lp/catapult-high-level-synthesis/

3

https://www.xilinx.com/products/design-tools/vivado.html
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/

1 do {

2 y = next(y); // 2 cycles

3 if(test(x, y)) // 2 cycles

4 x = foo(x); // 1 cycle

5 else

6 x = bar(x); // 3 cycles

7 } while(!x);

(a) Sample data-processing code. The number of
cycles required for each operation for the target
execution frequency is indicated as comments.

(b) SSA representation of the code in Figure 2a.
The HLS toolchain manipulates this internal rep-
resentation to infer the structure of the hardware.

Figure 2: High-Level Synthesis of a data-processing accelerator.

iteration of a loop each cycle. The design’s execution frequency depends on each base operator’s
execution time used in the datapath, thereby determining the clock cycle length. The user can
also choose to set the desired clock frequency, thereby constraining the generated circuit layout
and potentially increasing the generated hardware area. This area/frequency tradeoff is typical
in embedded hardware design. When given the code in Figure 2a, an HLS toolchain statically
schedules the execution of operations on the available resources from the corresponding Static
Single Assignment (SSA) [Cytron et al., 1991] representation of the program (Figure 2b).

2.3 Loop Pipelining and Static Scheduling

Figure 3a shows an example pipelined datapath generated from the code in Figure 2a. Each op-
eration is divided into several pipeline stages that are executed in parallel by the resulting circuit.
The result of the condition pilots a multiplexer, allowing either the result of foo or bar to be used
as the next value of x. A typical HLS toolchain produces a schedule similar to what is given in
Figure 3b for this datapath. This structure is akin to the pipeline of an instruction set processor
capable of overlapping the execution of successive loop iterations and is produced by a standard
HLS optimization known as loop pipelining. Loop pipelining transforms a sequential loop iteration
into a set of independent operations that the hardware can concurrently execute to speed up exe-
cution. In Figure 3b, cycles are represented on the horizontal axis while the different stages of the
synthesized pipeline are represented on the vertical axis. We note that some operations have been
divided into multiple stages by the HLS toolchain to accommodate the target execution frequency,
e.g. next(y) executes in two cycles and is divided into two corresponding pipeline stages. Each
colored group on this figure denotes the schedule for an iteration of the loop. The latter’s shape is
constrained by intra-iteration dependencies, while inter-iteration dependencies constrain the place-

4

(a) Pipelined datapath for the code in Fig-
ure 2a. Each operator is divided in stages,
with each stage corresponding to one clock
cycle, as can be seen in Figure 3b.

(b) Statically scheduled pipeline. Execution cycles are rep-
resented on the horizontal axis while the vertical axis repre-
sents the pipeline stages for each operation. The latency of the
pipeline is given by ∆ = 5 cycles while its initiation interval is
II = 3 cycles.

Figure 3: Pipeline datapath alongside the statically inferred iteration schedule.

ment of successive iterations in the schedule. One of the significant benefits of loop pipelining is its
ability to expose instruction-level parallelism (ILP). By dividing individual operations into multiple
execution stages, the HLS tool can infer a schedule where multiple instructions can be executed in
parallel.

Two metrics characterize a pipelined loop schedule: its initiation interval II, which designates
the delay between two successive iterations of the same loop, and its latency ∆, which corresponds
to the time it takes for one iteration of the loop to complete its execution. When synthesizing
hardware using HLS tools, designers generally aim at producing pipelined circuits with the smallest
initiation interval—often aiming for II = 1. A small value of II allows a new iteration of the loop
to start as soon as possible, maximizing throughput and resource usage in the hardware. However,
several factors, including resource availability, target clock frequency, and data dependencies, are
constrained by the initiation interval and latency of a given loop. HLS tools rely on sophisticated
compile-time analyses such as modulo scheduling [Rau, 1994,Lam, 1988] to compute the best value
of II and employ techniques similar to the software pipelining to map program instructions to
available computational resources. State-of-the-art HLS tools use System of Difference Constraint
(SDC) Modulo Schedulers to compute the initiation interval for a given design. SDC is a form of
Integer Linear Program (ILP), which can be solved in polynomial time with respect to the problem
size [Cong and Zhang, 2006]. The SDC form of the HLS scheduling problem can be expressed as{

minimize
∑

i∈I ti

subject to ti − tj 6 −Di + bi,jII
,

5

where ti is the starting cycle of operation i, Di is its delay and bi,j is a measure of intra-loop
dependencies between instructions i and j [de Souza Rosa et al., 2019].

2.4 The Need for Speculation

The fast pace at which computers evolved during the past few decades can be explained by a few key
innovations in processors’ design and architecture, as observed by [Patterson and Hennessy, 2017].
Speculation is one of those innovations that have shaped modern processing cores’ performance.
Speculation is a method used to uncover parallelism in programs by letting the processor “guess”
the outcome of the execution of a given instruction before it finishes its execution. When combined,
pipelining and speculation can drastically increase the execution speed of a processor [Patterson
and Hennessy, 2017, McFarlin et al., 2013]. However, such advanced optimizations come with a
significant design challenge that cannot be solved efficiently with today’s hardware synthesis tools.

While the schedule in Figure 3b reduces the time needed to complete the execution of the loop
compared to entirely sequential execution, it is far from optimal for many cases. For example,
when most of the executions of test(x,y) yield true. Computing bar(x) at each iteration wastes
both time and resources. Additionally, skipping the latter computation would allow more instruc-
tions or iterations to be overlapped and produce a tighter schedule. However, implementing such
a schedule would require an oracle. As a consequence, the HLS toolchain schedules for the worst
possible scenario. While this pessimistic scheduling approach produces valid schedules for all pos-
sible inputs, it cannot be used reasonably to synthesize processor cores. Since an Instruction Set
Simulator’s control-flow and dependencies are very complex, scheduling for the worst case would
lead to a significant under-utilization of hardware resources and drastically hinder the generated
core’s performance. To derive an efficient processor implementation, we need to generate hardware
operating under a speculative rather than a static schedule.

Common wisdom is that speculation is used in superscalar out-of-order processors, but even in-
order pipelined processors speculate. To synthesize an ISP, we need speculation. Speculation
allows the processor to guess the outcome of the execution of a given operation to enable the
execution of operations depending on it. We distinguish two types of speculation, namely control-
flow speculation and memory speculation. The former intervenes in cases where, for example, the
processor predicts that the condition in a branch is true to start executing the instructions after the
branch before the condition is evaluated. The processor may also speculate that a load following
a store does not refer to the same address, allowing the load to execute before the store. The
latter case is an example of memory speculation. The main difficulty with speculation is that it
may be wrong. Consequently, processors supporting speculative execution need to provide both
a mechanism to check if a prediction was correct and a mechanism to roll back any effects of the
resulting speculation on the program. The next section of this report explores recent results in
hardware synthesis that make speculative scheduling available to HLS tools and techniques that
can be used to generate speculative hardware, capitalizing on ahead-of-time execution to improve
performance further.

3 Synthesizing Speculative Hardware

Speculation is an execution method used in high-performance processing cores to unveil more
instruction-level parallelism, i.e. to enable a broader range of instruction to be executed concur-

6

rently. Speculative execution is an essential part of ISP design, with processors needing prediction
to enable efficient pipeline usage and execution. This section focuses on state-of-the-art techniques
that bring speculative execution to HLS design flows, allowing hardware designers to synthesize
speculative hardware from a high-level description. Section 3.1 focuses on dynamic scheduling,
which is the first step towards the synthesis of speculative hardware. Section 3.2 illustrates specu-
lative execution and highlights some of the challenges introduced by speculative scheduling. Sec-
tion 3.3 takes a look at speculative hardware synthesis by focusing on the work of [Josipović et al.,
2019] and [Derrien et al., 2020], describing the mechanisms introduced by the authors to bring
speculation to HLS.

3.1 Dynamic Scheduling: A First Step Towards Speculative Execution

One of the main reasons Instruction Set Processors excel in control-flow-dominated workloads is
their ability to quickly adapt their execution flow to external events or unpredictable changes in
the input. This kind of decision has to happen at runtime for the hardware to see the input data
and adapt the instruction schedule to potential variations. Compile-time scheduling such as the
static scheduling approaches implemented by HLS tools and presented in Section 2.3 are therefore
unfit for this type of computations. In this section, we focus on work by [Josipović et al., 2018],
which exposes a novel technique for the synthesis of dynamically scheduled circuits in traditional
HLS flows. The authors examine the synthesis of dynamically scheduled elastic circuits from a
high-level C description and compare the generated hardware to traditional HLS tools in terms of
design complexity and critical path length. Dynamic scheduling is the first step towards speculative
execution, which we will further discuss in Section 3.3.

Elastic circuit components are similar to usual datapath elements coupled to a handshaking
protocol based on ready/valid signal pairs. Handshaking is very common in asynchronous cir-
cuit design [Nowick and Singh, 2015], where multiple components need to synchronize without a
reference clock signal. Elastic circuits transfer these ideas from the asynchronous domain to syn-
chronous designs governed by a clock. The method described in [Josipović et al., 2018] relies on
a small number of elementary building blocks to construct elastic circuits around the concept of
token exchange. These basic components include storage units such as elastic buffers and FIFOs,
and control-flow components such as branching, merging, and path selection. The authors also in-
troduce elastic components that mimic threaded execution behavior in high-level languages, most
notably in the form of fork and join primitives. Figure 4a gives an elastic circuits for the code
in figure 2a. The proposed HLS toolchain4 maps each basic block of the CFG to a set of elastic
components.

By relying on elastic primitives, the authors shift scheduling from a centralized FSM to a
distributed network of handshake signals. This approach enables fine-grain local decisions to be
taken based on circuit input and output. This approach introduces two challenges addressed in the
paper:

• Correctness of the generated circuit : The authors observe that for the synthesized circuit to
be semantically correct, tokens propagating in the circuit need to follow the same order as
basic blocks in the input program. The proposed implementation propagates tokens through
all BBs on a path in the CFG, ensuring that a given basic block only receives data from its
immediate predecessors. This approach prevents early token consumption and subsequent

4https://dynamatic.epfl.ch/

7

https://dynamatic.epfl.ch/

(a) Dataflow circuit. Black arrows repre-
sent the flow of data tokens between elastic
components. next, test, foo and bar are
considered as black boxes.

(b) Dynamically scheduled pipeline. The first iteration has a
succeeding test(x, y) while it fails for the second iteration.
The third iteration is delayed until its dependency on B3 is re-
solved. II has been reduced to two cycles when test(x,y) is
true.

Figure 4: Dynamic scheduling for the code in figure 2a.

deadlocks in the circuit caused by input starvation. Datapaths containing cycles also need to
be broken up by elastic buffers to avoid deadlocks.

• Memory accesses: When interfacing with memory, the generated circuit needs to ensure the
consistency of memory accesses with respect to the input program. The authors introduce
an elastic Load-Store Queue (LSQ) component [Josipovic et al., 2017] to maintain consistent
memory access ordering. This LSQ keeps track of the current basic block executed by the
circuit using a dummy progress indicator token. It allocates new slots in program order,
therefore keeping memory accesses ordered even if the dynamic execution were to execute
parts of the program out-of-order.

The method described by [Josipović et al., 2018] produces more efficient schedules than tra-
ditional static scheduling techniques. Figure 4b illustrates the schedule obtained by applying the
technique described in this paper to schedule our example loop code. The interval between two
successive loop iterations is shorter when the test succeeds, bringing the effective or average II
close to 2 if most tests succeed. The circuits generated by the toolchain presented in [Josipović
et al., 2018] are such that their effective II never exceeds the II of their statically scheduled counter-
parts. Additionally, the authors show that the resource cost and clock speed impact of dynamically
scheduled HLS is mainly mitigated by the gain in execution performance, presenting an attractive
tradeoff for hardware design.

8

3.2 Speculative Execution

We illustrate a possible speculative schedule for Figure 2a’s code in Figure 5a. During the execution,
parts of a computation have been started using a false prediction’s result. The latter leads to a
rollback and stall of the pipeline until the dependency is resolved. This situation is one of three
kinds of hazards that can occur in a pipeline relying on speculative execution. A pipeline hazard
occurs when the next instruction cannot be executed in the next clock cycle by the pipelined
hardware. There are three different types of pipeline hazards:

• structural hazards occur when the hardware does not support the combination of instructions
that the processor wants to execute in the same clock cycle;

• data hazards occur when an instruction cannot execute in the proper clock cycle because data
that are needed to execute the instruction are not available yet;

• control hazards or branch hazards occur when an instruction cannot execute in the proper
clock cycle because the instruction that was fetched is not the one that is needed. Penalties
induced by control hazards are mitigated by the use of prediction and speculative execution.

These pipeline hazards lead to the hardware having to delay the execution of an instruction until the
hazard-induced constraint is resolved. One way to avoid the penalty of such a delay is to introduce
forwarding. Forwarding allows parts of a pipelined architecture to bypass some pipeline stages
and transfer their result to an earlier stage. This behavior is typical in modern processors, where
forwarding is used heavily to propagate computational results to subsequent program instructions
before writing the result back to main memory [Hennessy and Patterson, 2017].

In codes that exhibit both a slow and a fast path, speculation can drastically increase the gener-
ated hardware’s throughput and performance. In the following sections, we explore techniques that
can be used to make HLS tools generate such hardware from a high-level algorithmic specification.

3.3 Speculatively Scheduled Hardware Synthesis

Automating speculative hardware synthesis allows high-performance circuits to be designed more
efficiently while also improving hardware designers’ ability to sweep through the available design
space. Speculative hardware synthesis has been explored by hardware vendors looking to automate
the design process of parts of their processor cores, as shown in [Nurvitadhi et al., 2011]. The
latter presents a transactional model of speculation based on a DSL to describe state components
and combinational logic. Though the authors work at a low level of abstraction, their model
provides fine-grained speculation support with multiple forwarding and enables them to easily
iterate on a few different speculative pipeline designs. This work can be seen as the premise for
later developments in speculative hardware synthesis. More recent contributions have paved the
way to speculative hardware generation in the context of HLS toolchains. In this section, we take
a look at a speculative synthesis applied to elastic circuits [Josipović et al., 2019] and speculative
loop pipelining [Derrien et al., 2020].

3.3.1 Speculative Dataflow Circuits

In [Josipović et al., 2019], the authors build upon previous results presented in [Josipović et al.,
2018] to introduce speculative execution support in an experimental HLS toolchain. This paper
relies heavily on the framework developed in [Josipović et al., 2018] to provide dynamic execution

9

(a) Speculatively scheduled pipeline. The first iteration has
test(x,y) equal to true while the second one has it equal to
false. The execution assumes that the next value of x is the re-
sult of foo(x). A mispeculation leads to a rollback and pipeline
stall after the end of the fifth cycle.

(b) Speculative dataflow circuit. Black
arrows represent the flow of data tokens,
with dotted lines used to mark speculative
token paths. Red arrows are control sig-
nals used by the speculator.

Figure 5: Speculative scheduling for the code in Figure 2a.

capabilities to HLS. The authors introduce a new kind of data token to be exchanged with a
handshaking protocol to enable speculative execution in elastic circuits: speculative tokens. The
latter is generated by a dedicated hardware component named speculator, which integrates all
the prediction logic required to evaluate a control-flow path speculatively. In addition to issuing
speculative tokens in the circuit, speculators also ensure that the predictions made during the
execution are correct. If not, they control the rollback logic to revert the current state to a
valid one with the help of two additional structural circuit elements, namely commit units and
save units. Commit units are used to retain speculative tokens at critical parts of the circuit
until the speculator has validated the corresponding prediction. The speculative token is then
converted to a regular data token by the commit unit and forwarded to subsequent computational
elements. If the prediction was incorrect, the commit unit simply discards the speculative token.
Save units are the counterpart of commit units and store valid data tokens that enter a circuit
region where speculation may happen. The saved tokens are restored or flushed out depending
on the speculator’s decision regarding the corresponding speculative decision. Figure 5b shows an
example of speculative dataflow circuit generated from the code in Figure 2a.

Each time a speculator is inserted into a dataflow circuit, it defines a speculative region. This
region is delimited by save units at its entry points and commit units at its outputs. This setup
allows the extent of speculation to be well defined in the circuit and avoids possible interferences
between multiple speculators. In addition to new elastic components, speculation also mandates
that the execution path be marked as carrying a speculative value. The authors introduce a simple
marking bit following the datapath and indicating whether a speculator issued the value currently

10

carried by said datapath.

3.3.2 Speculative Loop Pipelining

The speculative hardware synthesis method presented in [Josipović et al., 2019] enables HLS tools
to introduce speculation generically by adding speculative components to the intermediate dataflow
circuit representation of the toolchain. This approach leverages both dynamic execution and pre-
diction to achieve execution similar to what can be found in modern instruction set processors.
However, this technique relies on a custom HLS middle and backend incorporating all the required
components to generate speculative dataflow circuits, making it harder to integrate with existing
HLS tools. One way to circumvent this limitation is to rely on input program transformation [Der-
rien et al., 2020] to expose speculation directly at the source level.

Speculative loop pipelining (SLP) [Derrien et al., 2020] is a hardware synthesis technique that
relies on source-to-source program transformations to directly expose speculative behavior in the
high-level specification used as an input to the synthesis toolchain. It extends traditional loop
pipelining (Section 2.3) with an additional pass aimed at exposing speculation opportunities in
strongly connected components of loops in a program. Figure 6 illustrates this approach on the
example code in Figure 2a. The initial loop code is transformed to decouple the data and control
paths in the execution, mapping data-dependent operations to per-cycle iterations and control
decisions to an external finite state machine (FSM). By making each iteration of the loop correspond
to one execution cycle, data dependencies and reuse distances become explicit, enabling the HLS
toolchain to schedule the speculative circuit efficiently. The entire control path is abstracted away
in an FSM represented at the bottom of Figure 6b. This FSM handles speculation and triggers
rollbacks or commit actions depending on the correctness of the predicted value. It contains four
distinct active states:

• the FILL state corresponds to the pipeline data fill-up;

• the PROCEED state corresponds to the stationary state of the pipeline, where correct specula-
tions are committed until a mispeculation is detected. In the latter case, the FSM moves to
the transient STALL state;

• the STALL state is used to pause the execution after a mispeculation to wait for the correct
value to be available, after which the FSM transitions to the ROLLB state;

• the ROLLB state restores the pipeline’s content in case of a mispeculation, effectively rolling
back all computations relying on an incorrect prediction. Once rollback is completed, the
pipeline is restarted in the FILL state.

The source-to-source transformation described by [Derrien et al., 2020] allows speculative hard-
ware to be generated with regular HLS toolchains. It relies on the HLS toolchain to perform
resource allocation and sharing easily. Speculative loop pipelining divides the input program’s
CFG into strongly connected components (SCC) and applies speculation to each SCC. To auto-
mate the detection of potential speculative execution points, SLP relies on a derivative of SSA form
to represent programs, namely Gated-SSA [Tu and Padua, 1995]. Gated-SSA replaces ϕ-nodes in
traditional SSA representation by µ-, γ-and η-nodes, while also considering arrays as singular val-
ues updated through opaque α-operations. SLP complements the Gated-SSA representation with
ρ-nodes. These new language elements are defined as follows:

11

1 #pragma hls distance mis_x=3

2 do {

3 #pragma hls pipeline II=1

4 ctrl[t] = test(s_x[t-2], y[t-2]);

5 mis_x[t] = bar(s_x[t-3]);

6 s_x[t] = foo(s_x[t-1]);

7 y[t] = next(y[t-2]);

8 cs = nextstate(cs, ctrl[t]);

9 if(cs.rollback) {

10 s_x[t] = mis_x[t];

11 }

12 if(cs.commit) {

13 x = cs.sel ? s_x[t-1]

14 : mis_x[t];

15 }

16 t += 1;

17 } while(!(x && cs.commit));

(a) Transformed loop.

1 enum tstate {IDLE, FILL, ...};

2 struct fsm {

3 int3 cnt;

4 tstate cs;

5 bool commit, rollback, sel;

6 } cs;

(b) Control finite state machine.

Figure 6: Speculative loop pipelining applied to the code in figure 2a.

• µ(xext, xin) replaces ϕ-nodes at the head of loops and selects either the initial value xext or
the loop-carried in value for a variable x;

• γ(c, xfalse, xtrue) replaces ϕ-nodes at confluence nodes after conditional statements, selecting
either xtrue or xfalse depending on the value of the condition c;

• η(c, xout) replaces ϕ-nodes at loop exits and selects the corresponding value of xout when the
loop exit condition c is met;

• ρ(d, c) is used to model a rollback with a data buffer d and control c: when c = 0, the ρ-node
forwards the most recent value of d to its output, and when c > 0, it discards the c most
recent elements and forwards the value in d stored c iterations in the past;

• α(a, i, v) acts as an assignment to an array, replacing the i-th element of a with v, thereby
allowing arrays to be considered as atomic objects.

Using this representation allows a source-to-source compiler to easily manipulate the input pro-
gram’s control flow and transform it through a series of simple changes to the Gated-SSA structure.
The SLP transformation implemented in the GeCoS compiler [Floc’h et al., 2013] modifies γ-node
inputs in SCCs to expose the reuse distance for each data source, as can be seen at lines 4–7 in
the code from Figure 6a, and creates a shadow variable for each speculated live-out variable. The
latter corresponds to mis x in Figure 6a and is used to compute values along non-speculatively
taken paths in case of a mispeculation. SLP then creates the FSM controlling the speculation logic
depicted in Figure 6b and creates an additional execution path in the program to commit values
out of the current SCC. Finally, ρ-nodes are inserted on back-edges of all live-out variables that are
not subject to speculation. These nodes handle the rollback logic to recover from a mispeculation.

12

(a) Gated-SSA representation of the code in Figure 2a. (b) IDG built from the Gated-SSA representa-
tion. The start symbol signals the beginning
of the loop while the exit? node checks for the
termination condition.

Figure 7: Gated-SSA and corresponding Instruction Dependency Graph (IDG) for the program in
Figure 2a.

Figure 7a shows the Gated-SSA representation of the program in Figure 2a. ϕ-nodes have been
replaced by their Gated-SSA counterparts and act as delimiters for the loop structure in the SSA
graph. Figure 7b gives the resulting Instruction Dependency Graph (IDG), with operation delays
as given in the comments of Figure 2a. We note that only x is subject to potential speculation
through the γ-node at the end of the loop. If a mispeculation were to occur, y is rolled back to a
previous value by the ρ-node on the back edge of the loop.

4 Instruction Set Processor Synthesis

Modern processors are still designed using low-level Hardware Description Languages, which put a
significant burden on designers who need to rewrite large parts of the hardware specification when
exploring the available design space for the same architecture in different application domains.
We aim at replacing this tedious manual work with an automated approach based on HLS flows
to automatically synthesize pipelined micro-architectures from an ISS written in C. This section
focuses on the generation of ISPs from this high-level behavioral description. More specifically,
we look at the typical organization of an ISS and its impact on the speculative structure of the
generated processor. Section 4.1 discusses Instruction Set Simulators while Section 4.2 exposes
different processor structures, increasing the complexity and the performance of the generated
hardware as we add more speculation opportunities.

13

1 while (1) {

2 ir = fetch(pc);

3 if (decode(ir) == BR) {

4 pc = exec(ir); // slow

5 } else {

6 pc = pc + 4; // fast

7 }

8 }

(a) Basic ISS.
(b) Structure of the 4-stage pipelined processor.

Figure 8: Pipelined processor with a single speculation on PC.

4.1 Instruction Set Simulators

Since our work focuses on synthesizing Instruction Set Processors, we look at Instruction Set
Simulators and their structure to generate speculative hardware. A typical ISS is modeled around
the execution flow of a traditional 4-stage pipelined processor:

1. Fetch the next instruction from memory, according to the value of the Program Counter (PC);

2. Separate the retrieved instruction into its elemental parts, decoding opcodes, immediate value,
and other elements needed for the proper execution of the instruction;

3. Execute the decoded instruction, matching the opcode and operands against those defined in
the ISA specification to take the corresponding action;

4. Write the result of the execution back to the register file or main memory.

This structure naturally exposes multiple speculation paths for us to consider. We can speculate
on the next value of PC, fetching instructions before actually knowing if the execution will divert
execution, e.g., through a jump instruction. Additionally, the matching operations performed by
the execution stage can also be speculated on, speculatively selecting the opcode and even the
corresponding operands before the decoding phase ends. Finally, writing results back to memory
implies memory speculation to rule out potential aliases and preserve Read-after-Write dependencies
during execution.

Speculative Loop Pipelining handles multiple speculations in the same SCC as a single specula-
tion, delaying all γ-nodes until the last one is ready. If a mispeculation occurs, the pipeline is rolled
back by a number of iterations corresponding to the maximum number of speculated γ-nodes on
the execution path. While this approach simplifies the overall mispeculation recovery and detec-
tion logic, it incurs an increased mispeculation penalty compared to more fine-grained approaches.
The complex interwinding of speculations implied by the structure of an ISS imposes finer-grain
handling of multiple speculations to generate efficient hardware. We proposed an extension to the
SLP model during this internship to efficiently handle multiple speculations in generated hardware.
We improved the existing memory speculation infrastructure to handle aliases in an ISS.

14

Figure 9: Full Instruction Set Simulator for our 4-stage pipelined processor.

4.2 Speculative Processor Structure

While speculation is commonly associated with high-performance OoO processor cores [McFarlin
et al., 2013], even in-order pipelined processors need speculation. In this section, we build the
speculative structure of an ISP from the ground up, starting from a simple speculation on the value
of the Program Counter (Section 4.2.1) and going through memory speculation, most notably on
aliases in the register file (Section 4.2.2). We end by adding forwarding (Section 4.2.3) to our
processor core. Section 4.2.4 then discusses the combination of dynamic and speculative decisions
inside of an ISP and shows that dynamism can be considered as a particular case of speculation.

4.2.1 Speculating on the Program Counter

We start building our processor with a simple Instruction Set Simulator shown in Figure 8a. While
this processor only supports branch instructions and does not do any helpful computation per se,
we recognize a speculation opportunity similar to the one in Figure 2a discussed in Section 3.2.
The processor’s execution can take either a “slow” path, decoding the branch target and setting
the value of PC accordingly, or a “fast” path that increments the Program Counter to point to
the next instruction in memory, four bytes after the current one. The resulting structure of the
processor core is shown in Figure 8b. In this section and the next ones, we will focus on a 4-stage
pipeline consisting of a fetch (F) stage and a decode (D) stage followed by two execution stages
(EX1 and EX2).

If we were to give the code in Figure 8a to a traditional HLS toolchain, static analysis would
determine that an iteration of the outer loop cannot start before the hardware section devoted to the
slow path has finished execution. Since the compiler cannot know where branches will be located
in memory, the resulting design would be suboptimal. We would need to pause the entire execution
to wait for the end of EX1 and EX2 when a simple increment of PC already gives the correct value
for the next iteration in most cases. This simple example demonstrates the observation highlighted
in Section 3.2 that processors without speculation cannot perform reasonably and that speculative

15

1 while (1) {

2 // ...

3 case NEG:

4 if (rd == prev_wr)

5 arg = ex2;

6 else

7 arg = regs[rd];

8 regs[wr] = ex2

9 = neg(arg);

10 prev_wr = wr;

11 break;

12 // ...

13 }

(a) Exposing register alias speculation in
the source code.

(b) Structure of the 4-stage pipelined processor with regis-
ter alias speculation. For memory speculation to work, we
need to insert a store queue to buffer pending stores on the
register file.

Figure 10: Pipelined processor with a speculation on PC chained with a speculation on the register
file.

hardware scheduling is fundamental to ISP synthesis using HLS tools.

4.2.2 Speculating on Register Aliases

The next step to create our processor is to add support for some additional instructions to perform
practical computations. To add those instructions, we modify the ISS in Figure 8a to perform
a match on the opcode of the decoded instruction with the set of opcodes defined in the ISA
specification for our architecture. Figure 9 shows the resulting simulator. A standard optimization
in Instruction Set Processors is to speculate on memory aliases to determine if an instruction can
be executed ahead of time in the absence of a Read-after-Write dependency. Our source-to-source
compiler implements a pass that allows us to expose a second speculation opportunity, on top of
the speculation on PC, in the code of Figure 9.

The transformation that our compiler performs on the input source code is based on the following
observation. Suppose we read a value from a location in memory and write to the same location
at the previous iteration. In that case, we can avoid having to access memory and directly use
the previously written value in the current iteration. Figure 10a shows the code corresponding to
the NEG opcode in the ISS of Figure 9 after said transformation. In C, we introduce a temporary
variable ex2 which is used to hold the result of the previous execution of the EX2 stage. Then, by
checking whether the current read location and the previous write location are the same, we can
use the cached result instead of querying the register file again.

We note that, contrary to the speculation on PC illustrated in Figure 8a, there is no clear
distinction between the fast and slow path in Figure 10a. Using ex2 instead of querying the
register file may be slower than directly accessing the appropriate register. The latency of the if

path in the ISS is directly linked to the latency of the execute stage of the generated pipeline,

16

while the else path’s latency is the latency of a memory access into the register file. Our compiler
chooses either one depending on the statically determined latency of the execute stage and on the
register access time.

Figure 10b shows the IDG representation of the transformed code in Figure 10a. There are now
two successive speculations in our processor, which require special care when scheduling the execu-
tion, as we will see in Section 5.3. We handle alias speculation on the register file by introducing
an α-node in the design, buffering pending stores on the register file, and updating the register file
as if it were a single value thanks to the α-node. The latter acts as a Store Queue (SQ) and allows
us to revert stores in case of a mispeculation. Changes to the underlying memory buffer are only
applied when the computation results need to be committed. The same principles can be used to
speculate on aliases when accessing main memory.

4.2.3 Data Forwarding

Nearly all processors make use of some form of data forwarding between different stages in their
pipeline. Forwarding allows the result of one stage of the pipeline to be directly used by another
stage without propagating through the entire pipeline structure first. Processor design tools use
forwarding extensively to reduce pipeline stalls caused by RaW dependencies [Nurvitadhi et al.,
2011]. We introduce a compiler pass that enables forwarding in the hardware generated by our
toolchain without additional user interaction. The forwarding transformation coupled to the register
file transformation discussed in Section 4.2.2 produces the code in Figure 11a for the NEG case of
the ISS in Figure 9. The resulting pipeline structure is given in Figure 11b.

There are three γ-nodes in our final processor, each one exposing a different speculation op-
portunity. These intertwined speculations produce complex interaction patterns that we need to
understand to generate the FSM controlling the execution. We discuss the challenges introduced
by multiple interacting speculations in section 5.

4.2.4 Combining Dynamic and Speculative Decisions

Our processor’s ISS contains an additional conditional statement in addition to the speculation
paths depicted in Figure 11, namely the switch statement matching the opcode of the current
operation. We could speculate on which opcode is to be executed next and start executing the
corresponding case block before the end of the test. However, we note that such a matching
operation can be guaranteed to take only one execution cycle. Applying our source-to-source
transformations to the opcode matching code exposes an edge case in the SLP model: speculation
with a unit conditional latency behaves as dynamic execution.

We extend the existing SLP model to handle unit condition latencies in the generated FSM
properly. This extension allows us to support the entire range of dynamic and speculative exe-
cution scenarii, which gives us greater flexibility when generating hardware. In particular, most
switch statements in an Instruction Set Simulator can be translated to dynamic decisions, adding
additional speculation opportunities to the ones illustrated in Figure 11.

5 Handling Multiple Speculations

Multiple intertwined speculations mechanically occur when trying to synthesize even quite simple
ISPs. This section gives an overview of the design space exploration opportunities around multiple

17

1 while (1) {

2 // ...

3 case NEG:

4 if (rd == prev_wr &&

5 ex1_data_avail(rd))

6 arg = ex1;

7 else {

8 if (rd == prev_wr)

9 arg = ex2;

10 else

11 arg = regs[rd];

12 }

13 ex1 = exec1(arg);

14 set_ex1_data_avail(rd);

15 ex2 = exec2(ex1);

16 regs[wr] = ex2;

17 prev_wr = wr;

18 break;

19 // ...

20 }

(a) Adding forwarding to the processor di-
rectly in the source code.

(b) Structure of the 4-stage pipelined processor with register
alias speculation and data forwarding. The three γ-nodes in
the IDG interact with one another to produce chained and
multiple intertwined speculations.

Figure 11: Pipelined processor with a speculation on PC, speculation on the register file and
forwarding.

speculation handling exposed by our work on the GeCoS source-to-source compiler. Section 5.1
discusses an extension to the SLP model that allows us to merge multiple speculative paths. The
following sections give an overview of multiple speculation scenarii that arise during the synthesis
of ISPs. Combining multiple speculations in the same hardware design is an intricate problem, as
mispeculations and the corresponding rollbacks need to be carefully handled to avoid trashing useful
data in the pipeline during the execution. We distinguish two classes of multiple speculations: multi-
conditional speculations, where chained γ-nodes are controlled by different conditional operations,
and chained speculations, where the result of one speculation is used to compute the inputs to
subsequent speculations. Both speculation types appear in the 4-stage pipelined processor given
in Figure 11b. We give an overview of multi-conditional speculations in Section 5.2 and focus on
chained speculations in Section 5.3. Section 5.4 details a few optimizations that we developed to
improve multiple speculation handling in synthesized hardware.

5.1 Fusing Multiple Speculation Paths

Speculative Loop Pipelining assumes that each γ-node in its internal IDG representation corre-
sponds to a conditional operator in the input code with a fast and a slow path attached. A conse-
quence of this assumption is that switch statements, for example, need to be converted to nested

18

(a) Multi-path speculation IDG.

(b) Simple speculation with multiple slow delay values.

Figure 12: Single speculation with multiple execution paths controlled by the same conditional.

if/else statements that are subsequently translated to multiple γ-nodes in the IDG. In order to
simplify the control logic, we merge γ-nodes controlled by the same conditional node in the IDG.
This transformation enables our FSM to handle multiple speculations on the same condition as a
single speculation with multiple possible speculative paths. We sort inputs to the merged γ-nodes
by increasing the value of II, increasing the speculated input number with each mispeculation. In
the following, we will call such speculation scenarii multipath speculations.

Figure 12 illustrates this situation on a simple example with a single variable, x, taking on one
of three different values depending on the value of a condition, C(x). We extend the regular SLP
model to include n-ary γ-nodes such that we can express IDGs in the form of Figure 12a. This
structure can be seen as a switch statement in C, with the condition determining which case

branch is taken to compute the next value of x. The condition takes three cycles to execute, while
F(x), Sa(x) and Sb(x) take respectively one, four and five cycles to complete their execution.
Figure 12b shows an example execution trace for this IDG. By default, the speculation assumes
that the condition always selects the fastest path, computing the next value of x using F. In cycle
4, a first mispeculation happens as the condition for the second iteration resolves and selects Sa(x)
as the proper value to use for the third iteration. The third and fourth iterations are subsequently
canceled and rolled back. The third iteration starts again with the new value of x. A second
mispeculation happens when the condition of the fourth iterations resolves to select Sb(x) instead
of the speculatively selected F(x). This time the pipeline is stalled, waiting for the longest path to
finish before proceeding to the fifth iteration.

The bottom of Figure 12b shows the state of the control FSM generated by our toolchain at
each cycle. The FILL state is kept until the first condition resolves in the PROCEED state. If there
is no mispeculation, we stay in the PROCEED state; otherwise, we compute the number of cycles
for which the pipeline needs to be stalled before the result of the slow path is available for the
next iteration. The pipeline is then stalled for the given number of cycles before rolling back the

19

(a) Multi-conditional speculation
IDG.

(b) Execution trace of a multi-conditional speculation.

Figure 13: Multiple speculation with different conditional latencies.

computations to start over with the correct input value. At cycle 4 in Figure 12b, the pipeline is
stalled for one cycle while the FSM transitions from the PROCEED to the ROLLBACK state, while it is
stalled for two cycles for the second mispeculation, at cycle 9.

We note that multipath speculations like the one depicted in Figure 12a can easily be reduced
to simple speculations by fusing the Sa and Sb paths in the generated circuit. However, fusing
these two paths leads to a slightly increased mispeculation penalty, as the longest of the fused
paths dictates the rollback distance for the considered γ-node. Multipath speculations, therefore,
expose a first design space exploration opportunity with a tradeoff between mispeculation penalty
and area overhead.

5.2 Multi-Conditional Speculations

The processor structure that emerged from our source-to-source transformations in Figure 11b
exhibits an interesting speculative construct that enters the EX1 stage. Two γ-nodes are following
each other and are controlled by potentially different control signals, the first one selecting between
the store queue and the no-alias path and the second one choosing between forwarding or accessing
the result of the previous execution. This pattern, which we call multi-conditional speculation, quite
commonly arises when translating nested conditional statements to their Instruction Dependency
Graph representation. This section discusses the interaction between the two γ-nodes involved in
such a speculative pattern.

Successive γ-nodes present us with new challenges related to the generation of the control
logic for the speculative circuit. One speculative decision can now be directly dependent on the

20

Figure 14: Instruction Dependency Graph for a chained speculation scenario.

outcome of another one. In the following, we will consider the IDG given in Figure 13a. This
example illustrates the pattern observed in the processor that we built in section 4.2.3 when adding
forwarding to our model. We consider three different data paths, namely F, Sa and Sb with
∆Sa < ∆Sb. The latency of each path is one, three, and five cycles, respectively. The two successive
γ-nodes are controlled by two conditional operators, Ca and Cb, which are divided into three and
five execution stages, respectively. We note that each γ-node follows the basic speculation pattern
required by the classical Speculative Loop Pipelining model [Derrien et al., 2020]: there are two
paths for each decision with distinct execution latencies. In the standard SLP framework, only
the bottom γ-node would be speculated. At the same time, the top one would be translated to a
simple multiplexer in the final design, effectively creating an opaque box encompassing Sa, Sb and
Cb with a total latency of five cycles. We introduce a finer-grain speculation model and treat both
γ-nodes as potential speculation candidates.

Figure 13b gives an example execution trace in our model for the circuit shown in Figure 13a.
There are three different possible mispeculation scenarii in this design:

• Ca resolves as a mispeculation while Cb resolves as a correct speculation;

• Ca resolves as a correct speculation while Cb resolves as a mispeculation;

• both Ca and Cb resolve as mispeculations.

The execution trace in Figure 13b only illustrates the former and the latter case. The case where
only Cb mispeculates is similar to the single speculation discussed in Section 3.2.

In Figure 13b, we suppose that a first mispeculation happens on Ca2 at the end of the fourth
cycle, ruling out F2 for the computations of the third iteration of the loop. The generated hardware
then speculatively selects Sa2 to be used for the next iteration, waiting for Cb2 to resolve to confirm
this choice. Since the result of Sa2 is already available at this stage of the pipeline, there is no need
to stall the execution, and we can directly proceed with the third iteration. When Cb resolves at
the end of the sixth cycle, the previous speculation is determined to be correct, and we continue the
execution. The same scenario happens at the end of the eighth cycle, but this time Cb4 also resolves
as a mispeculation. The fifth iteration, which was rolled back when the mispeculation happened
on Ca4, needs to be reset to use the result of Sb4 instead of Sa4. The correct data is injected into

21

Figure 15: Example execution trace of the chained speculation pattern from Figure 14. The
respective states of FSM(x)/FSM(y) are shown on the bottom part. When x is mispeculated over,
FSM(y) enters the RESET state.

the computation, and we then resume normal execution. Contrary to the single speculation case
discussed in previous sections of this report, this example shows that a rollback can occur even
in the middle of the pipeline filling process when a second conditional operator cancels an already
rolled back iteration.

The multi-conditional speculation pattern can be reduced to a simple multipath speculation
(Section 5.1) by merging the two conditional operators into a single one. Merging the two oper-
ators slightly increases the number of cycles required to resolve mispeculations. However, it can
significantly simplify the control logic, going from an FSM that can roll back at any point in the
execution to the more regular execution scheme of single speculations. This tradeoff highlights
another design space exploration opportunity for hardware designers, as using multi-conditional
speculations may only be helpful when the difference of latency between Ca and Cb becomes large.
We also note that this speculation pattern is only useful when ∆Ca < ∆Cb. If we were to have
∆Cb > ∆Ca, then merging Ca and Cb would result in no losses in the design and reduce the total
required die area after synthesis.

22

5.3 Chained Speculations

The last speculation pattern that appears in Figure 11b is chained speculation. Chained speculation
is an intricate speculation pattern where the result of one speculation is transformed and subse-
quently used in another speculative decision. Two variables, x and y, interact inside of a chained
speculation pattern in the program represented by the IDG in Figure 14. Both variables are used
to compute the next value of x and the latter is then injected into the computation for the next
value of y. The red edge in Figure 14 illustrates the latter connection.

We introduce two distinct FSMs to handle chained speculations. The first one is attached to
γ(x) and the second one to γ(y) and both interact to handle the interleaving of speculative values
in the overall circuit. We define a dominance relation ≺dom between FSMs, such that

∀x, y FSM(y) ≺dom FSM(x)

if there exists a path in the IDG from node γ(x) to node γ(y) and both nodes are speculated on.
In the example of Figure 14, we have FSM(y) ≺dom FSM(x) since the red path exiting from γ(x)
provides a potentially speculative value that is used to compute the speculative next value of y

through γ(y). The dominance relation allows us to define a hierarchical ordering on Finite State
Machines that need to interact when handling multiple speculations: FSM(x) is allowed to reset
the execution of FSM(y) if x is mispeculated over. To this effect, we introduce a fifth state in the
FSM defined in SLP (Figure 6b), RESET, that interrupts the current execution and transitions to
the FILL state when triggered by a dominating FSM.

Figure 15 gives an example execution trace for chained speculations. Similarly to the multi-
conditional speculation discussed in Section 5.2, we distinguish three different mispeculation cases:
either Ca or Cb mispeculate, or they both mispeculate during the same iteration. Figure 15 illus-
trates what happens when only Ca2 mispeculates in the second iteration of the outer loop: FSM(y)
transitions to the RESET state while FSM(x) stalls execution and rolls back once the result of Sa2

is available. The computation of y then starts again with the correct value of x. At the end of the
thirteenth cycle, Cb4 resolves to a mispeculation. The fifth iteration of the loop is subsequently
restarted while Ca4 and Sa4 are still executing, waiting to check whether the speculation of x that
produced the value used to compute y was correct. The latter proves to be true at the end of cycle
15. If Ca4 had been resolved to a mispeculation, we would have needed to go back to the beginning
of the fifth iteration of the loop once the result of Sa4 would have been available. Finally, the
last mispeculation on x happens at the end of cycle 19, requiring a pipeline stall and a subsequent
rollback to restart the computation of y. The new Cb6 that ends on cycle 24 is then also resolved
to a mispeculation. The latter leads the seventh iteration to be started again on cycle 25.

Chained speculations come with a large pool of different design choices, further expanding the
design space exploration space for ISP synthesis. Using retiming [van Antwerpen et al., 2013] on
γ-nodes, the circuit in Figure 14 can be transformed to Figure 16. The strong coupling between
the output of γ(x) and the computations for y has been eliminated at the cost of duplicating Fb, Sb
and Cb and introducing a few additional γ-nodes. The tree of speculative decisions that emerges in
Figure 16 can be further transformed by first re-balancing the γ-nodes and noticing that the path
used to compute the conditional operators after this transformation can be merged. By merging
the conditional paths used to control each γ-node, we end up with the hardware structure depicted
in Figure 17. We merge Ca and Fa/Cb to control the bottom γ-node since selecting the Fa/Fb path
in the γ-node tree at the top of the figure requires us to know the value of both of these conditional
paths. We end up with a merged conditional operator with a latency of ∆1 = 5 cycles. Similarly,

23

Figure 16: Converting a chained speculation to multi-conditional speculation using γ-node retiming.
We can eliminate the need for a second FSM at the cost of duplicating the fast and slow path to
compute y and by introducing two additional γ-nodes.

choosing between the three entries of the top γ-node in the final design requires a logical combination
of Ca, Fa/Cb and Sa/Cb, whose total latency ends up at ∆2 = 10 cycles. Figure 17 exhibits two
of the patterns described in previous sections, namely a multipath speculation (Section 5.1 and a
multi-conditional speculation encompassing the two γ-nodes. We note that the condition given at
the end of Section 5.2 is verified in the circuit depicted in Figure 17 since the latency of the merged
conditional operator controlling the bottom γ-node, ∆1, is strictly less than the merged conditional
latency for the top node, ∆2. This example shows us that exploiting retiming can widen the design
space exploration opportunities we have for micro-architecture synthesis.

5.4 Optimizations

In addition to the extensions we added to Speculative Loop Pipelining to support multiple inter-
twined speculations and finer-grain mispeculation recovery schemes, we explored several optimiza-
tion opportunities for the synthesized hardware. An essential design exploration insight lies in the
fact that each speculation path in a given hardware design can be explored individually, leading to
a set of tradeoffs that a user can explore with the help of our toolchain. This section focuses on
four key optimizations to increase the efficiency and cost of the hardware generated by combining
our source-to-source compiler and an HLS toolchain. Section 5.4.1 discusses FIFO elimination to
reduce the area overhead of the generated hardware, while Section 5.4.2 takes a look at an FSM
optimization for multiple speculations and especially chained speculations. Finally, Section 5.4.3
and Section 5.4.4 discuss two techniques that can be used to reduce the cost of the rollback logic
in the synthesized design.

24

Figure 17: Extracting a multi-path and a multi-conditional speculation from a tree of γ-nodes in
the circuit of Figure 16. Inputs to the gamma nodes are not represented and we denote by Fa/Sb
the fact that Fa precedes Sb on the path entering the corresponding γ-node.

5.4.1 FIFO Elimination

Speculative Loop Pipelining operates on Strongly Connected Components in the Control-Flow
Graph of the input program. Each SCC corresponds to a loop, with some loops that do not
expose speculation opportunities. Regardless of the fact that speculation can happen in an SCC,
its outputs are connected to other SCCs in the program by FIFOs. The latter incurs a significant
area overhead when linking a non-speculative SCC to another SCC in the circuit. We introduce
a transformation pass in the GeCoS compiler that merges non-speculative SCCs into speculative
ones, thereby reducing the total area used by our design.

The cost of FIFOs can be reduced further by observing that when arrays are involved, a FIFO
can be replaced by a rollback buffer. Rollback placement is another instance of the retiming problem
that we already encountered in Section 5.3. Consequently, we can exploit retiming in our compiler
to place the rollback buffer at a strategic location to minimize the required data handling and
control logic.

5.4.2 FSM Optimization

Chained speculations require multiple interacting FSMs to handle the complex interplay of specula-
tive values in hardware. We showed in Section 5.3 and Figure 17 that chained speculation patterns
can be transformed to a combination of multipath and multi-conditional speculations. However,
this transformation may incur a significant area cost in the generated hardware because of the
duplication of parts of the datapath. Another way to transform chained speculation would be to
act on the control logic instead of modifying the path that the data travels in the circuit. We can

25

compute the cartesian product of the FSMs that control the γ-nodes involved in the speculation,
eliminating unreachable states while building the combined FSM [Hsieh, 2010]. Further exploration
is required to measure the impact of such a transformation on the generated hardware.

5.4.3 Rollback Elimination

We observe that some rollbacks inserted by our toolchain may not be necessary. In the CPU example
first introduced in Section 4.2.1, the naive approach would insert a rollback in the final design to
revert any changes on the value of the program counter. However, we realize that there is no
need to rollback pc as it will always get a value either from the increment to the next instruction
or from a branch and never go back to a previous value during the execution. Variables with
such strong forward progress properties do not require any rollback logic and are characterized
by a rollback result being used only by a single γ-node. We can eliminate the corresponding
rollback by computing the transitive closure of the adjacency relation in the Instruction Dependency
Graph [Nuutila, 1995], starting from the rollback output and checking whether it is used in a single
location in the circuit.

5.4.4 Reversible Computations

We say that a hardware operator Ω on variable x is reversible if there exists a finite set of hardware
operators W = {ω1, . . . , ωn} such that

∃I = (i1, . . . , in) ∈ Sn ωi1(. . . (ωin(Ω(x))) . . .) = x,

with Sn denoting the set of all permutations of elements in J1;nK. Suppose operations executed
in the speculative hardware are reversible. In that case, we can avoid using a rollback buffer and
instead add operators of W to compute the inverse of an operation Ω on a variable to simulate a
rollback. A simple example of this optimization in practice would be to replace the complex rollback
and control logic used to revert an arithmetic operation of the form i += 1. Instead of keeping a
history of the successive values of i to revert to an older iteration in case of a mispeculation, we
can insert a subtract operator and compute i -= n when we need to cancel the last n iterations.

6 Conclusion and Future Work

Speculative execution is an essential part of Instruction Set Processor design, even for simple in-
order pipelined architectures. During this internship, we explored several techniques that can be
used to bring speculative hardware generation to High-Level Synthesis toolchains, providing the
foundations to make ISP design amenable to HLS. Synthesizing an efficient processor core from a
high-level description proves challenging, as a typical ISP exhibits complex interleaved speculative
patterns. We proposed an extension to the Speculative Loop Pipelining model to handle multiple
speculations and fine-grain mispeculation recovery schemes, which will serve as a foundation to
efficient processor synthesis from Instruction Set Simulators.

In its current state, our source-to-source compiler can successfully generate elementary Instruc-
tion Set Processors that properly handle a few multiple speculation schemes. Some work is still
needed to refine and implement the chained speculation model in our toolchain. We hope to pro-
vide preliminary results on end-to-end ISP synthesis by the end of this internship. Discussions on

26

potential future work have also been quite fruitful, with new research directions pointing to further
micro-architectural feature syntheses such as branch predictors, and formal verification methods for
the designs generated by our toolchain. Existing work on the verification of dynamically scheduled
circuits [Josipović et al., 2018] may serve as a good starting point for such work [Cheng et al., 2021].
While we do not have the ambition to generate hardware as optimized as hand-tuned HDL descrip-
tions, we expect to land not far behind such designs in terms of performance and area overhead.
We expect to be able to produce code similar to the Comet RISC-V core [Rokicki et al., 2019] soon.
Since our approach is based on statically determined features of the input code, we also expect to
generate more straightforward and more efficient hardware than other state-of-the-art techniques
that rely entirely on dynamic scheduling and execution since many simplifications can already be
done at compile time with static analysis of the input code.

References

[Cheng et al., 2021] Cheng, J., Wickerson, J., and Constantinides, G. A. (2021). Probabilistic
optimization for high-level synthesis. In The 2021 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’21, page 145, New York, NY, USA. Association for
Computing Machinery.

[Cloutier and Thomas, 1993] Cloutier, R. J. and Thomas, D. E. (1993). Synthesis of pipelined in-
struction set processors. In Proceedings of the 30th International Design Automation Conference,
DAC ’93, page 583–588, New York, NY, USA. Association for Computing Machinery.

[Cong and Zhang, 2006] Cong, J. and Zhang, Z. (2006). An Efficient and Versatile Scheduling
Algorithm Based on SDC Formulation. In Proceedings of the 43rd Annual Design Automation
Conference, DAC ’06, page 433–438, New York, NY, USA. Association for Computing Machinery.

[Cytron et al., 1991] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K.
(1991). Efficiently computing static single assignment form and the control dependence graph.
ACM Trans. Program. Lang. Syst., 13(4):451–490.

[de Souza Rosa et al., 2019] de Souza Rosa, L., Bouganis, C.-S., and Bonato, V. (2019). Scaling
up modulo scheduling for high-level synthesis. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 38(5):912–925.

[Derrien et al., 2020] Derrien, S., Marty, T., Rokicki, S., and Yuki, T. (2020). Toward specula-
tive loop pipelining for high-level synthesis. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 39(11):4229–4239.

[Floc’h et al., 2013] Floc’h, A., Yuki, T., El-Moussawi, A., Morvan, A., Martin, K., Naullet, M.,
Alle, M., L’Hours, L., Simon, N., Derrien, S., Charot, F., Wolinski, C., and Sentieys, O. (2013).
Gecos: A framework for prototyping custom hardware design flows. In 2013 IEEE 13th Interna-
tional Working Conference on Source Code Analysis and Manipulation (SCAM), pages 100–105.

[Hennessy and Patterson, 2017] Hennessy, J. L. and Patterson, D. A. (2017). Computer Architec-
ture, Sixth Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 6th edition.

27

[Hsieh, 2010] Hsieh, S. C. (2010). Product construction of finite-state machines. In Proc. of the
World Congress on Engineering and Computer Science, pages 141–143.

[Huang and Despain, 1993] Huang, I.-J. and Despain, A. M. (1993). Hardware/software resolution
of pipeline hazards in pipeline synthesis of instruction set processors. In Proceedings of the 1993
IEEE/ACM International Conference on Computer-Aided Design, ICCAD ’93, page 594–599,
Washington, DC, USA. IEEE Computer Society Press.

[Josipovic et al., 2017] Josipovic, L., Brisk, P., and Ienne, P. (2017). An out-of-order load-store
queue for spatial computing. ACM Trans. Embed. Comput. Syst., 16(5s).

[Josipović et al., 2018] Josipović, L., Ghosal, R., and Ienne, P. (2018). Dynamically scheduled
high-level synthesis. In Proceedings of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’18, page 127–136, New York, NY, USA. Association for
Computing Machinery.

[Josipović et al., 2019] Josipović, L., Guerrieri, A., and Ienne, P. (2019). Speculative dataflow cir-
cuits. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA ’19, page 162–171, New York, NY, USA. Association for Computing Ma-
chinery.

[Klemm et al., 2007] Klemm, R., Sabugo, J. P., Ahlendorf, H., and Fettweis, G. (2007). Using
LISATek for the Design of an ASIP Core including Floating Point Operations. In MBMV.

[Lam, 1988] Lam, M. (1988). Software pipelining: An effective scheduling technique for VLIW
machines. In Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language
Design and Implementation, PLDI ’88, page 318–328, New York, NY, USA. Association for
Computing Machinery.

[Lattner and Adve, 2004] Lattner, C. and Adve, V. (2004). LLVM: a compilation framework for
lifelong program analysis transformation. In International Symposium on Code Generation and
Optimization, 2004. CGO 2004., pages 75–86.

[McFarlin et al., 2013] McFarlin, D. S., Tucker, C., and Zilles, C. (2013). Discerning the dominant
out-of-order performance advantage: Is it speculation or dynamism? In Proceedings of the
Eighteenth International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, page 241–252, New York, NY, USA. Association for Computing
Machinery.

[Nowick and Singh, 2015] Nowick, S. M. and Singh, M. (2015). Asynchronous design–part 1:
Overview and recent advances. IEEE Design Test, 32(3):5–18.

[Nurvitadhi et al., 2011] Nurvitadhi, E., Hoe, J. C., Kam, T., and Lu, S.-L. L. (2011). Automatic
pipelining from transactional datapath specifications. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 30(3):441–454.

[Nuutila, 1995] Nuutila, E. (1995). Efficient transitive closure computation in large digraphs. Acta
Polytechnica Scandinavia: Math. Comput. Eng., 74:1–124.

28

[Patterson and Hennessy, 2017] Patterson, D. A. and Hennessy, J. L. (2017). Computer Orga-
nization and Design RISC-V Edition: The Hardware Software Interface. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition.

[Rau, 1994] Rau, B. R. (1994). Iterative modulo scheduling: An algorithm for software pipelining
loops. In Proceedings of the 27th Annual International Symposium on Microarchitecture, MICRO
27, page 63–74, New York, NY, USA. Association for Computing Machinery.

[Rokicki et al., 2019] Rokicki, S., Pala, D., Paturel, J., and Sentieys, O. (2019). What You Simu-
late Is What You Synthesize: Design of a RISC-V Core from C++ Specifications. In RISC-V
Workshop 2019, pages 1–2, Zurich, Switzerland.

[Tu and Padua, 1995] Tu, P. and Padua, D. (1995). Gated SSA-Based Demand-Driven Symbolic
Analysis for Parallelizing Compilers. In Proceedings of the 9th International Conference on Super-
computing, ICS ’95, page 414–423, New York, NY, USA. Association for Computing Machinery.

[van Antwerpen et al., 2013] van Antwerpen, B., Hutton, M. D., Baeckler, G. W., and Yuan, J.
(2013). Register retiming technique (Patent US8806399B1).

29

	Introduction
	Motivation and Background
	Customizing Instruction Set Processors
	High-Level Synthesis
	Loop Pipelining and Static Scheduling
	The Need for Speculation

	Synthesizing Speculative Hardware
	Dynamic Scheduling: A First Step Towards Speculative Execution
	Speculative Execution
	Speculatively Scheduled Hardware Synthesis

	Instruction Set Processor Synthesis
	Instruction Set Simulators
	Speculative Processor Structure

	Handling Multiple Speculations
	Fusing Multiple Speculation Paths
	Multi-Conditional Speculations
	Chained Speculations
	Optimizations

	Conclusion and Future Work

