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Abstract: In the embedded and IoT spaces, typical computing scenarios traditionally involve
processing large quantities of data in regular patterns. However, the trend in specialized compu-
tational domains is slowly shifting. New applications such as data mining, graph analytics, and
machine learning introduce a new computational framework that requires special-purpose hardware
to provide a programmable interface and to operate on control-flow dominated workloads. These
workloads are well-suited for Instruction Set Processors, but the design of these complex hardware
pieces is costly and very error-prone. This internship aims to study how to take advantage of
state-of-the-art work on speculative hardware synthesis to make Instruction Set Processor design
amenable to High-Level Synthesis flows. We will study the challenges induced by interwinding
multiple speculations and explore fine-grain misspeculation recovery schemes, directing our efforts
towards small embedded processors based on in-order pipelined architectures. This bibliographic
report introduces the internship’s context, alongside issues and challenges related to speculative
hardware synthesis.
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1 Introduction

Spearheaded by the personal computer’s advent and the rapid development of microprocessor tech-
nology, the computing revolution has profoundly transformed our society and the way we interact
with the world. Nowadays, computing devices have become omnipresent: from high-performance
multi-core machines in high-end servers to small low-power embedded devices in our phones, com-
puters are everywhere. The fast pace at which computers evolved during the past few decades can
be explained by a few key innovations in processors’ design and architecture, as observed by [Patter-
son and Hennessy, 2017]. Pipelining and speculation are two of those innovations that have shaped
modern processing cores’ performance. Pipelining refers to a technique used by hardware to enable
faster program execution by overlapping the execution of multiple instructions. On the other hand,
speculation is a method used to uncover parallelism in programs by letting the processor “guess”
the outcome of the execution of a given instruction before it finishes its execution.

When combined, pipelining and speculation can drastically increase the execution speed of a
processor. However, such advanced optimizations come with a significant design challenge. Hard-
ware Description Languages (HDL) are programming languages that allow their users to write a
specification of a piece of hardware at the Register Transfer Level (RTL). RTL provides an abstrac-
tion over physical components that models a digital circuit in terms of the flow of digital signals
between physical registers and the logical operations and combinations applied to those signals.
Using HDLs to design pipelined Instruction Set Processors (ISP) is challenging and involves a sig-
nificant number of refinements before getting to an accurate hardware description. Starting from
a specification of the underlying Instruction Set Architecture (ISA), hardware designers need to
make choices regarding, e.g., the pipeline structure, the number of pipeline stages, or the placement
of individual registers. Once the hardware description is written, there is no room left for design
space exploration. This design process is tedious and error-prone, making ISA and ISP elaboration
extremely difficult.

The increasing demand for custom instructions and architectural features for processors in
embedded and IoT applications cannot be addressed with currently available tools. Additionally,
most existing processors in those spaces rely on proprietary ISAs, preventing third parties from
freely customizing the micro-architecture or instruction set. Those restrictions severely hinder
innovation. The RISC-V1 initiative aims at addressing this issue by developing and promoting
an open instruction set architecture. The RISC-V ecosystem is quickly growing and has gained
much traction for IoT platform designers, as it permits free customization of both the ISA and the
micro-architecture. However, going from a simulation model to an actual hardware description is
still a daunting task requiring complex verification and debugging steps.

This internship aims at making instruction set processor design amenable to the embedded space
by leveraging High-Level Synthesis (HLS) tools. We will examine new ways to take advantage of
state-of-the-art work on speculative hardware synthesis to make ISP design amenable to HLS flows.
More specifically, we will explore source-level transformations that would allow in-order pipelined
ISPs to be synthesized from a high-level behavioral description in the form of an Instruction Set
Simulator (ISS). Such a simulator often implements a high-level state machine that decodes instruc-
tions and executes them sequentially. The intricate control flow and data dependencies between
successive instructions make such designs particularly challenging for HLS toolchains. We will focus
on improving state-of-the-art program transformation techniques that enable speculative hardware

1https://riscv.org/
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Figure 1: Micro-architectural design space.

synthesis and apply those techniques to instruction set simulators to generate the corresponding
processing cores during this internship. We will study the challenges induced by interwinding
multiple speculations and explore fine-grain misspeculation recovery schemes, focusing our efforts
towards small embedded processors based on in-order pipelined architectures.

The remainder of this bibliographic report is structured as follows. Section 2 exposes the moti-
vation and background for our work. Section 2.1 exposes previous work on instruction set processor
synthesis while Section 2.2 gives an overview of High-Level Synthesis and motivates its use for com-
plex hardware design synthesis and design space exploration. Section 2.3 discusses loop pipelining
and static scheduling, two fundamental aspects of modern HLS workflows, before emphasizing the
limitations of those approaches. A complementary approach to static scheduling, dynamic schedul-
ing, is exposed in Section 3.1. Modern general-purpose instruction set processors rely on dynamic
scheduling coupled with speculative execution to achieve high performance on heterogeneous work-
loads. Section 3.2 explores state-of-the-art techniques for the synthesis of speculative hardware.
Finally, Section 4 concludes this report by discussing early reflections on the upcoming work.

2 Motivation and Background

In this section, we start by presenting early work on customizing instruction set processors in the
context of Application-Specific Instruction Set Processors in Section 2.1 before giving an overview
of the fundamental principles of High-Level Synthesis in Section 2.2. Section 2.3 then focuses on
two key aspects of modern HLS flows, namely loop pipelining and static scheduling.

2.1 Customizing Instruction Set Processors

Instruction set processors are intricate pieces of hardware designed to execute a stream of instruc-
tions stored in external memory. These processors offer a highly flexible programming interface,
which makes them well suited for highly irregular and heterogeneous workloads. Irregular work-
loads are inherent to desktop, mobile, and high-performance computing, where most applications
are control-dominated. On the other hand, in the embedded and IoT spaces, typical computing
scenarios traditionally involve little variability and control but focus on processing large quantities
of data. Instead of targeting programmability and flexibility, special-purpose hardware is designed
to reduce power consumption and increase performance on a single well-defined set of applications
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(e.g., signal processing, video encoding and decoding). However, the trend in specialized compu-
tational domains is slowly shifting. New applications such as data mining, graph analytics, and
machine learning introduce new computational needs that require special-purpose hardware to pro-
vide a programmable interface and to operate on control-flow dominated workloads. Addressing
these new requirements challenges hardware manufacturers to design programmable hardware with
many custom features while still providing fast processing times and reduced energy consumption.
The design of ISPs is a tedious and error-prone process that needs to be conducted carefully to
prevent the hardware from misbehaving once it is produced.

A single instruction set specification can be used to design a wide variety of ISPs. Figure 1
illustrates some of the different design choices that can be made for the same ISA. This design
landscape spans from very low-power devices based on low-energy micro-coded micro-architectures
to high-performance Out-of-Order (OoO) processors. Pipelined designs based on single-issue or
multiple-issue in-order pipelines are also widespread in connected devices. This implementation
diversity leads to a large design space encompassing tradeoffs between die area, power consumption,
and performance. The inherent complexity of design space exploration makes it a good target for
design automation.

The first approaches aimed at automating the design of ISPs were proposed in the context
of Application-Specific Instruction Set Processor (ASIP) design flows. ASIPs are programmable
processing cores targeting a particular application domain. As a result of their specialized nature,
the ISA of ASIPs is tailored to the application, exposing specially-crafted instructions and focusing
on a small set of tasks. Proposed approaches for automated ASIP design often rely on Domain-
Specific Languages (DSL) to model the processor hardware structure along with its ISA [Cloutier
and Thomas, 1993,Huang and Despain, 1993,Klemm et al., 2007]. The abstraction level provided
by ASIP synthesis tools is often very close to that of hardware description languages and asks
for explicit management of architectural choices such as pipeline depth and organization, available
data forwarding points, and hazard detection logic.

2.2 High-Level Synthesis

High-Level Synthesis (HLS) was first proposed to overcome the many limitations of HDL-based
design flows. In an HDL-based design flow, the hardware generated by the HDL synthesis tool may
not always meet the designer’s constraints. In such a case, large parts of the specification need
to be rewritten, which is at least impractical. Contrary to HDL-based hardware synthesis, HLS
allows its user to specify the behavior of a given piece of hardware in a high-level language—often
C or C++—and to focus on the algorithmic specification of the hardware’s operation. An HLS
toolchain infers the hardware’s structure from this high-level description and the required resources
and clock frequency constraints. This approach abstracts the user away from most implementation
details and makes changes to the hardware easier to apply, therefore significantly improving the
designer’s capabilities to conduct design space exploration.

Nowadays, High-Level Synthesis tools are developed both in academia and by major Electronic
Design Automation (EDA) vendors. Commercial tools include Xilinx’ Vivado HLS2 and Mentor
Graphics’ Catapult HLS3, both based on C/C++. These tools extend the language with implicit
semantics and restrict the set of language features that can be used to describe hardware behavior.

2https://www.xilinx.com/products/design-tools/vivado.html
3https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
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1 do {

2 y = next(y); // 2 cycles

3 if(test(x, y)) // 2 cycles

4 x = foo(x); // 1 cycle

5 else

6 x = bar(x); // 3 cycles

7 } while(!x);

(a) Sample data-processing code. The number of
cycles required for each operation for the target
execution frequency is indicated as comments.

(b) Corresponding pipelined datapath.

Figure 2: High-Level Synthesis of a data-processing accelerator.

Most notably, HLS introduces strong memory management restrictions by prohibiting dynamic
memory management and global variables and providing only limited support for pointer arithmetic.

To get a better feeling for the actual work carried out by an HLS toolchain, let us consider
an example. Figure 2a shows sample code that we could write in a typical C-based HLS tool to
describe a data-processing accelerator. We will use this example as an illustration throughout this
report. Given such an algorithmic specification, an HLS tool will produce hardware in the form of a
finite state machine controlling a datapath. Our example code can be processed to produce various
hardware layouts depending on the designer’s constraints, such as the type of components to use
or the target clock frequency. By default, High-Level Synthesis generates a circuit executing one
iteration of a loop each cycle. The design’s execution frequency depends on each base operator’s
execution time used in the datapath, determining the length of a clock cycle. The user can also
choose to set the desired clock frequency, thereby constraining the generated circuit layout and
potentially increasing the generated hardware area. This area/frequency tradeoff is typical in
embedded hardware design. Figure 2b shows an example pipelined datapath generated from the
code in figure 2a.

2.3 Loop Pipelining and Static Scheduling

When given the code in figure 2a, an HLS toolchain statically schedules the execution of opera-
tions on the available resources from the corresponding Static Single Assignment (SSA) [Cytron
et al., 1991] representation of the program (figure 3a). It produces a schedule similar to what is
given in figure 3b. This structure is akin to the pipeline of an instruction set processors capable
of overlapping the execution of successive loop iterations and is produced by a standard HLS opti-
mization known as loop pipelining. Loop pipelining transforms a sequential loop iteration into a set
of independent operations that the hardware can concurrently execute to speed up execution. In
figure 3b, cycles are represented on the horizontal axis while the different stages of the synthesized
pipeline are represented on the vertical axis. We note that some operations have been divided into
multiple stages by the HLS toolchain to accommodate the target execution frequency, e.g. next(y)
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(a) SSA representation of the code in fig-
ure 2a. The HLS toolchain manipulates
this internal representation to infer the
structure of the hardware.

(b) Statically scheduled pipeline. Execution cycles are rep-
resented on the horizontal axis while the vertical axis repre-
sents the pipeline stages for each operation. The latency of the
pipeline is given by ∆ = 5 cycles while its initiation interval is
II = 3 cycles.

Figure 3: Internal SSA representation alongside the statically inferred iteration schedule.

executes in two cycles and is divided into two corresponding pipeline stages. Each coloured group
on this figure denotes the schedule for an iteration of the loop. The latter’s shape is constrained
by intra-iteration dependencies, while inter-iteration dependencies constrain the placement of suc-
cessive iterations in the schedule. One of the significant benefits of loop pipelining is its ability
to expose instruction-level parallelism (ILP). By dividing individual operations into multiple ex-
ecution stages, the HLS tool can infer a schedule where multiple instructions can be executed in
parallel.

Two metrics characterize a pipelined loop schedule: its initiation interval II, which designates
the delay between two successive iterations of the same loop, and its latency ∆, which corresponds
to the time it takes for one iteration of the loop to complete its execution. When synthesizing
hardware using HLS tools, designers generally aim at producing pipelined circuits with the smallest
initiation interval—often aiming for II = 1. A small value of II allows a new iteration of the loop to
start as soon as possible, maximizing throughput and resource usage in the hardware. However, the
initiation interval and latency of a given loop is constrained by several factors, including resource
availability, target clock frequency, and data dependencies. HLS tools rely on sophisticated compile-
time analyses such as modulo scheduling [Rau, 1994, Lam, 1988] to compute the best value of II
and employ techniques similar to the software pipelining to map program instructions to available
computational resources.

While the schedule in figure 3b reduces the time needed to complete the execution of the loop
compared to entirely sequential execution, it is far from optimal for many cases. For example,
when most of the executions of test(x,y) yield true. Computing bar(x) at each iteration wastes
both time and resources. Additionally, skipping the latter computation would allow more instruc-
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tions or iterations to be overlapped and produce a tighter schedule. However, implementing such
a schedule would require an oracle. As a consequence, the HLS toolchain schedules for the worst
possible scenario. While this pessimistic scheduling approach produces valid schedules for all pos-
sible inputs, it cannot be used reasonably to synthesize processor cores. Since an instruction set
simulator’s control-flow and dependencies are very complex, scheduling for the worst case would
lead to a significant under-utilization of hardware resources and drastically hinder the generated
core’s performance. To derive an efficient processor implementation, we need to generate hardware
operating under a dynamic rather than a static schedule. The next section of this report explores
recent results in hardware synthesis that make dynamic scheduling available to HLS tools and
techniques that can be used to generate speculative hardware, capitalizing on dynamic execution
to further improve execution performance.

3 Synthesizing Speculative Hardware

A fundamental aspect of modern processor performance is speculative execution. Speculation is
an execution method used in high-performance processing cores to unveil more instruction-level
parallelism, i.e. to enable a broader range of instruction to be executed concurrently. As we will
see in Section 3.2, speculative execution comes in two forms: control-flow speculation and memory
speculation. Several recent techniques to extend HLS tools to derive speculative hardware have
been proposed [Josipović et al., 2018, Josipović et al., 2019, Derrien et al., 2020]. In particular,
speculative loop pipelining [Derrien et al., 2020] is a promising approach that can handle both
control-flow and memory speculations within a classical HLS framework. The remainder of this
section gives an overview of state-of-the-art techniques used to synthesize dynamically scheduled
(Section 3.1) and speculative hardware (Section 3.2) from a high-level algorithmic specification.

3.1 Dynamic Scheduling

One of the main reasons why instruction set processors excel in control-flow dominated workloads
is their ability to quickly adapt their execution flow to external events or unpredictable changes in
the input. This kind of decision has to happen at runtime for the hardware to see the input data
and adapt the instruction schedule to potential variations. Compile-time scheduling such as the
static scheduling approaches implemented by HLS tools and presented in Section 2.3 are therefore
unfit for this type of computations. In this section, we focus on work by [Josipović et al., 2018],
which exposes a novel technique for the synthesis of dynamically scheduled circuits in traditional
HLS flows. We also look at [Cheng et al., 2020], which aims to combine static and dynamic
scheduling into a single HLS framework to generate hardware with a minimal surface area and
maximal performance. Dynamic scheduling is the first step towards speculative execution, which
we will further discuss in Section 3.2.

3.1.1 Dynamically Scheduled High-Level Synthesis

Static scheduling in HLS tools limits the performance for kernels with dynamic decisions. Dynamic
execution is the only way to overcome the overhead introduced by static scheduling in the presence of
memory dependencies or on execution paths involving variable-latency operations. In this section,
we focus on recent work that showed how dynamic scheduling could be brought to HLS design
flows [Josipović et al., 2018]. In this paper, the authors examine the synthesis of dynamically
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scheduled elastic circuits from a high-level C description and compare the generated hardware to
traditional HLS tools in terms of design complexity and critical path length.

Elastic circuit components are similar to usual datapath elements coupled to a handshaking
protocol based on ready/valid signal pairs. Handshaking is very common in asynchronous cir-
cuit design [Nowick and Singh, 2015], where multiple components need to synchronize without a
reference clock signal. Elastic circuits transfer these ideas from the asynchronous domain to syn-
chronous designs governed by a clock. The method described in [Josipović et al., 2018] relies on
a small number of elementary building blocks to construct elastic circuits around the concept of
token exchange. These basic components include storage units such as elastic buffers and FIFOs,
and control-flow components such as branching, merging, and path selection. The authors also in-
troduce elastic components that mimic threaded execution behavior in high-level languages, most
notably in the form of fork and join primitives. Figure 4a gives an elastic circuits for the code
in figure 2a. The proposed HLS toolchain4 maps each basic block of the CFG to a set of elastic
components.

By relying on elastic primitives, the authors shift scheduling from a centralized FSM to a
distributed network of handshake signals. This approach enables fine-grain local decisions to be
taken based on circuit input and output. This approach introduces two challenges addressed in the
paper:

• Correctness of the generated circuit : The authors observe that for the synthesized circuit to
be semantically correct, tokens propagating in the circuit need to follow the same order as
basic blocks in the input program. The proposed implementation propagates tokens through
all BBs on a path in the CFG, ensuring that a given basic block only receives data from its
immediate predecessors. This approach prevents early token consumption and subsequent
deadlocks in the circuit caused by input starvation. Datapaths containing cycles also need to
be broken up by elastic buffers to avoid deadlocks.

• Memory accesses: When interfacing with memory, the generated circuit needs to ensure the
consistency of memory accesses with respect to the input program. The authors introduce
an elastic Load-Store Queue (LSQ) component [Josipovic et al., 2017] to maintain consistent
memory access ordering. This LSQ keeps track of the current basic block executed by the
circuit using a dummy progress indicator token. It allocates new slots in program order,
therefore keeping memory accesses ordered even if the dynamic execution were to execute
parts of the program out-of-order.

The method described by [Josipović et al., 2018] produces more efficient schedules than tra-
ditional static scheduling techniques. Figure 4b illustrates the schedule obtained by applying the
technique described in this paper to schedule our example loop code. The interval between two
successive loop iterations is shorter when the test succeeds, bringing the effective or average II close
to 2 if most of the tests succeed. The circuits generated by the toolchain presented in [Josipović
et al., 2018] are such that their effective II never exceeds the II of their statically scheduled counter-
parts. Additionally, the authors show that the resource cost and clock speed impact of dynamically
scheduled HLS is mostly mitigated by the gain in execution performance, thereby presenting an
attractive tradeoff for hardware design.

4https://dynamatic.epfl.ch/
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(a) Dataflow circuit. Black arrows repre-
sent the flow of data tokens between elastic
components. next, test, foo and bar are
considered as black boxes.

(b) Dynamically scheduled pipeline. The first iteration has a
succeeding test(x, y) while it fails for the second iteration.
The third iteration is delayed until its dependency on B3 is re-
solved. II has been reduced to two cycles when test(x,y) is
true.

Figure 4: Dynamic scheduling for the code in figure 2a.

3.1.2 Combining Dynamic and Static Scheduling

Capitalizing on the work presented in Section 3.1.1, a more recent approach [Cheng et al., 2020]
exposes a hybrid approach to High-Level Synthesis of hardware under more restrictive resource and
area constraints. The authors’ key observation is that while dynamic scheduling brings significant
performance improvements, it also drastically increases the number of resources needed to propagate
and handle handshaking and synchronization between components.

The design method presented by [Cheng et al., 2020] allows parts of a circuit to be synthesized
as statically-scheduled components using traditional HLS synthesis techniques. In contrast, the
interconnections between those components and the generated design’s control logic are dynamically
scheduled. This selective replacement of small parts of a dynamic design produces substantial area
savings while still providing faster execution times than an entirely static schedule. This hybrid
approach leads to highly-effective static scheduling techniques for parts of the circuit that operate
on regular workloads while still offering the flexibility of dynamic scheduling parts of the design
that need to handle runtime decisions.

3.2 Speculative Hardware Synthesis

As introduced in Section 3.1, dynamic scheduling is the first stepping stone towards the generation
of high-performance hardware based on speculative execution. The latter is an essential part of
instruction set processor design, with processors needing prediction to enable efficient pipeline
usage and execution. This section focuses on state-of-the-art techniques that bring speculative
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execution to HLS design flows, allowing hardware designers to synthesize speculative hardware
from a high-level description. Section 3.2.1 illustrates speculative execution and highlights some
of the challenges introduced by speculative scheduling. Section 3.2.2 takes a look at speculative
hardware synthesis by focusing on the work of [Josipović et al., 2019] and [Derrien et al., 2020],
describing the different mechanisms introduced by the authors to bring speculation to HLS. Finally,
Section 3.2.3 compares speculative dataflow circuits and speculative loop pipelining in the context
of ISP synthesis.

3.2.1 Speculative Execution

Speculative execution is an execution method used by high-performance computing cores to uncover
more instruction-level parallelism. Common wisdom is that speculation is used in superscalar out-
of-order processors, but even in-order pipelined processors speculate. To synthesize an ISP, we
need speculation. Speculation allows the processor to guess the outcome of the execution of a
given operation to enable the execution of operations depending on it. We distinguish two types
of speculation, namely control-flow speculation and memory speculation. The former intervenes in
cases where, for example, the processor predicts that the condition in a branch is true to start
executing the instructions after the branch before the condition is evaluated. The processor may
also speculate that a load following a store does not refer to the same address, allowing the load to
execute before the store. The latter case is an example of memory speculation. The main difficulty
with speculation is that it may be wrong. Consequently, processors supporting speculative execution
need to provide both a mechanism to check if a prediction was correct and a mechanism to roll
back any effects that the resulting speculation might have had on the program.

We illustrate a possible speculative schedule for figure 2a’s code in figure 5b. During the
execution, parts of a computation have been started using a false prediction’s result. The latter
leads to a rollback and stall of the pipeline until the dependency is resolved. This situation is one
of three kinds of hazards that can occur in a pipeline relying on speculative execution. A pipeline
hazard occurs when the program’s next instruction cannot be executed in the next clock cycle by
the pipelined hardware. There are three different types of pipeline hazards:

• structural hazards occur when the hardware does not support the combination of instructions
that the processor wants to execute in the same clock cycle;

• data hazards occur when an instruction cannot execute in the proper clock cycle because data
that are needed to execute the instruction are not available yet;

• control hazards or branch hazards occur when an instruction cannot execute in the proper
clock cycle because the instruction that was fetched is not the one that is needed. Penalties
induced by control hazards are mitigated by the use of prediction and speculative execution.

These pipeline hazards lead to the hardware having to delay the execution of an instruction until the
hazard induced constraint is resolved. One way to avoid the penalty of such a delay is to introduce
forwarding. Forwarding allows parts of a pipelined architecture to bypass some pipeline stages and
transfer their result to an earlier stage. This behavior is common in modern processors, where
forwarding is used heavily to propagate computational results to subsequent program instructions
before writing the result back to main memory [Hennessy and Patterson, 2017].

In codes that exhibit both a slow and a fast path, speculation can drastically increase the
generated hardware’s throughput and performance. In the next sections, we explore techniques
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(a) Speculative dataflow circuit. Black ar-
rows represent the flow of data tokens,
with dotted lines used to mark specula-
tive token paths. Red arrows are control
signals used by the speculator.

(b) Speculatively scheduled pipeline. The first iteration has
test(x,y) equal to true while the second one has it equal to
false. The speculation revolves around a control-flow predic-
tion that assumes that the next value of x is the result of foo(x).
A misspeculation leads to a rollback and pipeline stall after the
end of the fifth cycle.

Figure 5: Speculative scheduling for the code in figure 2a.

that can be used to make HLS tools generate such hardware from their usual high-level algorithmic
specification input.

3.2.2 Introducing Speculation in Synthesized Hardware

Automating speculative hardware synthesis allows high-performance circuits to be designed more
efficiently while also improving hardware designers’ ability to sweep through the available design
space. Speculative hardware synthesis has been explored by hardware vendors looking to automate
the design process of parts of their processor cores, as shown in [Nurvitadhi et al., 2011]. This paper
presents a transactional model of speculation based on a Domain-Specific Language to describe
state components and combinational logic. Though the authors work at a low level of abstraction,
their model provides fine-grained speculation support with multiple forwarding and enables them to
iterate on a few different speculative pipeline designs easily. This work can be seen as the premise
for later developments in speculative hardware synthesis. More recent contributions have paved the
way to speculative hardware generation in the context of HLS toolchains. In this section, we take
a look at a speculative synthesis applied to elastic circuits [Josipović et al., 2019] and speculative
loop pipelining [Derrien et al., 2020].

In [Josipović et al., 2019], the authors build upon previous results presented in Section 3.1.1 to
introduce speculative execution support in an experimental HLS toolchain. This paper relies heavily
on the framework developed in [Josipović et al., 2018] to provide dynamic execution capabilities to
HLS. The authors introduce a new kind of data token to be exchanged with a handshaking protocol
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to enable speculative execution in elastic circuits: speculative tokens. The latter is generated by a
dedicated hardware component named speculator, which integrates all the prediction logic required
to evaluate a control-flow path speculatively. In addition to issuing speculative tokens in the circuit,
speculators also ensure that the predictions made during the execution are correct. If not, they
control the rollback logic to revert the current state to a valid one with the help of two additional
structural circuit elements, namely commit units and save units. Commit units are used to retain
speculative tokens at critical parts of the circuit until the speculator has validated the corresponding
prediction. The speculative token is then converted to a regular data token by the commit unit
and forwarded to subsequent computational elements. If the prediction was incorrect, the commit
unit simply discards the speculative token. Save units are the counterpart of commit units and are
used to store valid data tokens that enter a region of the circuit where speculation may happen.
The saved tokens are restored or flushed out depending on the speculator’s decision regarding the
corresponding speculative decision. Figure 5a shows an example of speculative dataflow circuit
generated from the code in figure 2a.

Each time a speculator is inserted into a dataflow circuit, it defines a speculative region. This
region is delimited by save units at its entry points and commit units at its outputs. This setup
allows the extent of speculation to be well defined in the circuit and avoids possible interferences
between multiple speculators. In addition to new elastic components, speculation also mandates
that the execution path be marked as carrying a speculative value. The authors introduce a simple
marking bit following the datapath and indicating whether a speculator issued the value currently
carried by said datapath.

The speculative hardware synthesis method presented in [Josipović et al., 2019] enables HLS
tools to introduce speculation generically by adding speculative components to the intermediate
dataflow circuit representation of the toolchain. This approach leverages both dynamic execution
and prediction to achieve execution similar to what can be found in modern instruction set pro-
cessors. However, this technique relies on a custom HLS middle-and backend incorporating all the
required components to generate speculative dataflow circuits, making it harder to integrate with
existing HLS tools. One way to circumvent this limitation is to rely on input program transforma-
tion [Derrien et al., 2020] to expose speculation directly at the source level.

Speculative loop pipelining (SLP) [Derrien et al., 2020] is a hardware synthesis technique that
relies on source-to-source program transformations to directly expose speculative behavior in the
high-level specification used as an input to the synthesis toolchain. It extends traditional loop
pipelining (Section 2.3) with an additional pass aimed at exposing speculation opportunities in
strongly-connected components of loops in a program. Figure 6 illustrates this approach on the
example code in figure 2a. The initial loop code is transformed to decouple the data and control
paths in the execution, mapping data-dependent operations to per-cycle iterations and control
decisions to an external finite state machine (FSM). By making each iteration of the loop correspond
to one execution cycle, data dependencies and reuse distances become explicit, enabling the HLS
toolchain to schedule the speculative circuit efficiently. The entire control path is abstracted away
in an FSM represented at the bottom of figure 6b. This FSM handles speculation and triggers
rollbacks or commit actions depending on the correctness of the predicted value. It contains four
distinct active states:

• the FILL state corresponds to the pipeline data fill-up;

• the RUN state corresponds to the stationary state of the pipeline, where correct speculations
are committed until a misspeculation is detected. In the latter case, the FSM moves to the
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1 #pragma hls distance mis_x=3

2 do {

3 #pragma hls pipeline II=1

4 ctrl[t] = test(s_x[t-2], y[t-2]);

5 mis_x[t] = bar(s_x[t-3]);

6 s_x[t] = foo(s_x[t-1]);

7 y[t] = next(y[t-2]);

8 cs = nextstate(cs, ctrl[t]);

9 if(cs.rollback) {

10 s_x[t] = mis_x[t];

11 }

12 if(cs.commit) {

13 x = cs.sel ? s_x[t-1]

14 : mis_x[t];

15 }

16 t += 1;

17 } while(!(x && cs.commit));

(a) Transformed loop.

1 enum tstate {IDLE, FILL, ...};

2 struct fsm {

3 int3 cnt;

4 tstate cs;

5 bool commit, rollback, sel;

6 } cs;

(b) Control finite state machine.

Figure 6: Speculative loop pipelining applied to the code in figure 2a.

transient STALL state;

• the STALL state is used to pause the execution after a misspeculation to wait for the correct
value to be available, after which the FSM transitions to the ROLLB state;

• the ROLLB state restores the pipeline’s content in case of a misspeculation, effectively rolling
back all computations relying on an incorrect prediction. Once rollback is completed, the
pipeline is restarted in the FILL state.

The source-to-source transformation described by [Derrien et al., 2020] allows speculative hard-
ware to be generated with regular HLS toolchains. It relies on the HLS toolchain to perform
resource allocation and sharing easily. Speculative loop pipelining divides the input program’s
CFG into strongly connected components (SCC) and applies speculation to each SCC. To auto-
mate the detection of potential speculative execution points, SLP relies on a derivative of SSA form
to represent programs, namely Gated-SSA [Tu and Padua, 1995]. Gated-SSA replaces ϕ-nodes in
traditional SSA representation by µ-, γ-and η-nodes, while also considering arrays as singular val-
ues updated through opaque α-operations. SLP complements the Gated-SSA representation with
ρ-nodes. These new language elements are defined as follows:

• µ(xext, xin) replaces ϕ-nodes at the head of loops and selects either the initial value xext or
the loop-carried in value for a variable x;

• γ(c, xfalse, xtrue) replaces ϕ-nodes at confluence nodes after conditional statements, selecting
either xtrue or xfalse depending on the value of the condition c;
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• η(c, xout) replaces ϕ-nodes at loop exits and selects the corresponding value of xout when the
loop exit condition c is met;

• ρ(d, c) is used to model a rollback with a data buffer d and control c: when c = 0, the ρ-node
forwards the most recent value of d to its output, and when c > 0, it discards the c most
recent elements and forwards the value in d stored c iterations in the past;

• α(a, i, v) acts as an assignment to an array, replacing the i-th element of a with v, thereby
allowing arrays to be considered as atomic objects.

Using this representation allows a source-to-source compiler to easily manipulate the input pro-
gram’s control flow and transform it through a series of simple changes to the Gated-SSA structure.
The SLP transformation modifies the inputs of γ-nodes in SCCs to expose the reuse distance for
each data source, as can be seen at lines 4–7 in the code from figure 6a, and creates a shadow
variable for each speculated live-out variable. The latter corresponds to mis x in figure 6a and is
used to compute values along non-speculatively taken paths in case of a misspeculation. SLP then
creates the FSM controlling the speculation logic depicted in figure 6b and creates an additional ex-
ecution path in the program to commit values out of the current SCC. Finally, ρ-nodes are inserted
on back-edges of all live-out variables that are not subject to speculation. These nodes handle the
rollback logic to recover from a misspeculation.

3.2.3 Discussion

Designing speculative hardware is an inherently challenging problem, as it requires a lot of careful
considerations about where to speculate and how to handle potential misspeculations. In more
advanced speculation schemes, multiple speculations may also interact during the execution of
the same program. This scenario is typical in instruction set processors, where predictors are
used to predict the next instruction to fetch for execution or disambiguate register and memory
dependencies.

Speculative dataflow circuits [Josipović et al., 2019] and speculative loop pipelining [Derrien
et al., 2020] are well-suited for the generation of speculative hardware using HLS design flows.
Both approaches perform efficient loop pipelining and support both control-flow speculation and
memory disambiguation using a load-store queue (LSQ). However, while speculative dataflow circuit
synthesis requires a custom HLS backend to generate hardware, SLP is fully compatible with
existing HLS tools and can exploit the latter’s resource-sharing capabilities where appropriate.
Additionally, speculative dataflow circuits do not allow designers to specify the desired pipeline
depth: the circuit’s operations constrain the latter. SLP brings more flexibility for such design
space exploration steps. It also relies solely on static analyses, while speculative dataflow circuits
need heuristics for elastic buffer placement and sizing.

The work presented in [Josipović et al., 2019] briefly mentions that the implementation natively
supports multiple speculations from the same speculation unit because the design preserves the
relative order of tokens, thereby preventing any interchange between speculative decisions in commit
and save units. According to the authors, interleaving speculations from multiple speculators should
be relatively straightforward by employing a tagging system to identify each speculative token’s
origin. However, the paper does not describe any concrete example of such an approach. Speculative
loop pipelining [Derrien et al., 2020] also provides limited support for multiple speculations in the
same strongly connected component of a loop, grouping all predictions and considering them as
a single unit for the misspeculation recovery path. The authors acknowledge that this approach
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simplifies the overall control logic of the generated design at the cost of an increased misspeculation
penalty. Both speculative hardware synthesis techniques explored in this report lay the groundwork
for multiple speculation support, but further work is required to refine them to make them applicable
to instruction processor design.

4 Conclusion

Speculative execution is an essential part of instruction set processor design, even for simple in-
order pipelined architectures. This report has explored several techniques that can be used to
bring speculative hardware generation to high-level synthesis toolchains, providing the foundations
to make ISP design amenable to HLS. However, before synthesizing an efficient processor core
from a high-level description, state-of-the-art speculative hardware synthesis techniques need to be
refined to handle multiple interleaved speculations and finer-grain recovery schemes.

We will focus on speculative loop pipelining and its application to instruction set processor
synthesis during this internship. Our goal is to generate an in-order pipelined processor core from
an instruction set simulator written in the C language. We will explore program transformations in
the same framework as SLP to guide the underlying HLS toolchain towards the successful generation
of a processor instead of interacting with the HLS backend. The first step of this internship will
be to study the speculative elements interacting in an ISS for the RISC-V architecture. We will
then explore how SLP can be leveraged to synthesize a processor pipeline from this ISS. Speculative
hardware synthesis plays a key role in this last step, as even in-order pipelined processors speculate.
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