
Static Memory Dependence Analysis for
Hardware Optimizations

Jean-Michel Gorius

Univ Rennes, ENS Rennes – F-35000, Rennes, France
jean-michel.gorius@ens-rennes.fr

Supervisors:

Alexandra Jimborean
Uppsala University
Uppsala – Sweden

Alberto Ros
University of Murcia

Murcia – Spain

Internship location and dates: University of Murcia, 03/02/20–26/06/20

Abstract. Modern Out-of-Order hardware can determine the memory
dependencies between individual instructions and change their execution
order to maximize pipeline usage, executing non-dependent instructions
during long-latency memory accesses. However, this kind of computation
is redundant, as the information computed by the hardware at run-time is
available to the compiler at compile-time. We introduce a collaborative
software-hardware approach that leverages the LLVM compiler infras-
tructure to perform memory disambiguation at compile-time. We show
that a majority of load instructions can benefit from such a technique
for a wide range of workloads.

Keywords: LLVM, static analysis, memory dependence, store queue,
HW/SW co-design

1 Introduction

Modern high-performance processors are based on out-of-order (OoO) architec-
tures. When executing on such a processor, a program’s instructions can be
reordered before being executed, which can lead to increased performance for
a wide range of workloads. On current hardware, the gap between CPU speed
and memory speed is increasing, with memory operations becoming more and
more of a bottleneck for program execution [4]. Out-of-order execution toler-
ates the latency of multi-cycle operations by executing independent instructions
concurrently. The new execution order must preserve program correctness, and
thus, the processor needs to execute inter-dependent instructions in the right
order. There are two different kinds of dependence between instructions: register
dependencies and memory dependencies. The former are known statically, and
the processor can use register renaming to resolve true and false dependencies
between instructions. On the other hand, memory dependencies have to be de-
termined dynamically by the processor during program execution. This task,

2 Jean-Michel Gorius

which is often referred to as memory disambiguation, introduces the need for
complex hardware components designed for low-level load-store alias analysis.

The following sections describe memory dependence handling in modern
hardware and motivate the use of cooperative software-hardware approaches to
reduce the hardware logic’s complexity for memory disambiguation. Section 1.1
gives a broad overview of memory dependence handling in hardware. Section 1.2
focuses on store-load dependencies and hardware implementations for data for-
warding between stores and loads. The memory disambiguation system is one
of the least scalable parts of modern processor architectures because of its in-
trinsic complexity. Section 1.3 presents a few existing approaches to improve the
scalability of memory disambiguation.

1.1 Memory dependence handling

Out-of-order hardware needs to obey memory dependencies between instructions
while providing high-performance execution. The issue that arises when trying
to handle load and store instructions is that, in many cases, the memory ad-
dress is not known until the load or store executes. Therefore, determining the
dependence or independence of loads and stores has to be handled after their
execution, or at least after partially executing them to resolve the source or des-
tination address. Since the CPU executes instructions out of program order, a
recent load instruction can have its address resolved before an older store’s ad-
dress is known. If the store location happens to overlap with the load’s address
and width, then the load should only be executed after knowing what value
would be stored to said location. There are three different ways to deal with
such unknown addresses. The conservative approach is to stall the load until all
previous stores have computed their addresses or even retired. The CDC 6600
computer [14] used such a conservative memory disambiguation scheme. On the
other hand, a very aggressive method would be to assume that every load is
independent of unknown-address stores and schedule the load as soon as it is
ready to be processed. This approach comes at a high cost, since the hardware
needs to revert execution in case there is an actual dependence between the load
and an unknown-address store. Modern processors follow a more elaborate strat-
egy that makes use of a specialized predictor to assess if a load is independent
of unknown-address stores that precede it [7, 2]. A recovery mechanism is still
needed in case of a misprediction.

1.2 Out-of-Order completion of memory operations

In order to enable the OoO execution of memory instructions, the OoO engine
needs to detect the memory dependence of a given load instruction on a previous
store instruction. Even assuming that we know all addresses of past stores when
resolving the load address, we still need to check whether it is dependent on a
past store and if so, we need to forward the data that is written by the store to
the load instruction. In modern high-performance processors, instead of waiting
until all previous stores commit to memory, the hardware keeps a list of pending

Static Memory Dependence Analysis for Hardware Optimizations 3

stores in a store queue (SQ), and a list of pending loads in a load queue (LQ) [9].
Those two queues can be combined in a single load/store queue. The following
paragraph illustrates the operation of the SQ.

When the processor encounters a store instruction in the program, it registers
it in the SQ. When such an instruction finishes execution, it writes its address
and data in its SQ entry. When a next load instruction computes its address, it
searches the SQ with said address for a store that writes at least to a part of
the loaded memory location. Missing parts of the load value are queried from
the memory hierarchy. If there are one or more entries in the SQ that write to
the load location, then the hardware needs to combine those values and forward
them to the load.

Store	Queue

Head

Tail

V0 V1

Address Data

1

1

1

1

1

1

1

1 1

0

1

0

1

0

1

1

0 0

A

B

C

D

E

C+3

G

H

0xffff

0x01

N/A

0x0002

0x42

0x17

N/A

0x0110 Memory
hierarchy

Load	4	bytes	from
address	C

Fig. 1: Reconstructing load data from the store queue and the memory hierarchy.

Figure 1 illustrates the process of resolving memory dependencies between
a load instruction and several store instructions from the SQ. The store queue
contains one store in each row, with the most recent store located at the tail
of the queue. Each entry contains the destination address and the written data,
alongside a validity bit for each field. In this example, we assume that all store
addresses have been resolved and are valid. Let us further assume that the pro-
gram’s next instruction is a load of four bytes from address C. Once the load
address has been resolved, the SQ is traversed from tail to head and the range
of loaded memory locations is compared against the stored addresses. The hard-
ware finds a first match for the store at address C+3 and a second one for a store
at address C. Since there is no additional match in the SQ for the two remaining
bytes, they need to be fetched from the memory hierarchy. Once the data for
the store at address C is known, the value is constructed and stored in the load’s
destination.

4 Jean-Michel Gorius

1.3 Memory disambiguation scalability issues

Searching the store queue for every load can be very expensive, as one SQ traver-
sal involves three different types of searches at the hardware level: a content
addressable search to check for address matches, a range search based on the ad-
dress and size of both the load and earlier store instructions, and an age-based
search that needs to determine the last written values in the SQ. Moreover, as
illustrated in figure 1, load data can sometimes be the combination of multi-
ple source values. Reducing the complexity of the memory disambiguation logic
would make it possible to design more resource-efficient processors and increase
the scalability of the hardware [13, 5]. Several techniques have been developed
towards this goal, some at the hardware level and others at the software level.

The NoSQ design [13] introduces a microarchitecture that performs store-
load communication without a store and a load queue. Instead, it introduces a
new hardware component designed for speculative memory bypassing [8] based
on an accurate store-load communication predictor. Another way to achieve
higher architectural scalability is to use cooperative software-hardware designs
that lift some of the operations usually performed in hardware to the software
level. Huang et al. [5] introduce such an approach to memory disambiguation. By
using a binary parser to identify loads that can safely avoid the memory disam-
biguation checks, the authors can insert special-purpose instructions to inform
the underlying hardware not to perform a store queue traversal when encounter-
ing said loads. This approach is based on the assumption that the physical ISA
of the processor can be extended by decoupling it from the architected ISA.

We propose a similarly cooperative approach to memory disambiguation that
leverages the existing alias analysis infrastructure of the compiler to detect store-
load dependencies at compile-time.

2 Analyzing memory dependencies at compile time

We base our work on the observation that hardware replicates at run-time the
memory dependence analysis performed statically by the compiler, thus paying
a performance overhead and added complexity (which translates to higher en-
ergy costs). We transfer part of this complexity to the compiler and implement
a compiler pass that performs static memory dependence analysis and commu-
nicates this information to the target processor. We implement our analysis pass
using LLVM [6]. Our work focuses on x86 platforms, but it could be extended
to other architectures by taking advantage of LLVM’s target-independent code
generation infrastructure.

The following sections describe how we communicate alias information to the
hardware (section 2.1) and briefly introduce the LLVM alias analysis infrastruc-
ture (section 2.2). Section 2.3 presents our analysis pass in more details.

2.1 Communicating store-load dependences to the hardware

When traversing the store queue upon encountering a load, the hardware is
looking for the nearest store that writes to parts of the loaded memory location.

Static Memory Dependence Analysis for Hardware Optimizations 5

We introduce a method that gives hints to the processor about where the first
aliasing store is likely to be located in the store buffer by providing a lower-
bound estimate on the number of non-aliasing stores that precede a given load
instruction in the program. We forward this number to the hardware by marking
load instructions using a combination of no-op instructions inserted before the
load. By adding a marker detection mechanism to the memory disambiguation
logic, we can instruct the processing logic to skip the given number of stores in
the store buffer when looking for an alias. The following method is based on the
assumption that the hardware includes such a marker detector.

We explored different marking strategies to find one that would best fit our
purpose. Figure 2 illustrates the successive iterations we went through.

mov rdi, 10

xchg rdi, rdi

mov rax, [0x1234]

(a) Register value.

xor rdi, 10

xor rdi, 10

mov rax, [0x1234]

(b) Involutive operations.

xchg r9, r9 ; 1

xchg r10, r10 ; 2

mov rax, [0x1234]

(c) Base-8 encoding.

Fig. 2: Different load marking strategies for an aliasing distance of 10.

Our first approach stored the estimated number of non-aliasing stores (or
alias distance) in a known register, rdi (figure 2a), before signaling the presence
of a marker to the hardware by issuing an xchg rdi, rdi instruction. The main
advantage of this approach is that the marker’s value is easily retrieved by read-
ing the current value of rdi. However, for this marking strategy to be effective,
we need to reserve a register that will be used exclusively for markers. Reserv-
ing a register could lead to increased register pressure and possible performance
degradations due to spilling. On the other hand, saving and restoring the marker
register’s value is not always possible since block terminating instructions such
as ret also load from memory. If we were to insert a push/pop pair around the
marker and the marked load, the pop following a block terminator would never
be executed. The x86 instruction set provides a few involutive operations that
we can use to avoid having to reserve a given register for our markers. A good
candidate for such an approach is the xor instruction (figure 2b). However, since
the xor operation modifies the value of the flags register, the insertion of mark-
ers that use such an instruction can potentially change the execution of loads
that need to access the value of the flags. To avoid such changes, we need to use
true no-op instructions. The x86 nop instructions are used by the compiler for
alignment and padding purposes and are thus excluded. In order not to interfere
with the compiler’s output, we chose to encode the alias distance using xchg

instructions. We chose to encode the computed alias distance in base 8, using
registers r8-15 as our digits. Figure 2c gives an example of how we would encode
an alias distance of 1010, or 128.

6 Jean-Michel Gorius

2.2 Alias analysis in LLVM

LLVM provides a generic alias analysis infrastructure that allows several analysis
passes to be plugged in transparently. LLVM alias analysis passes work on LLVM
IR, an SSA-based [3] representation of the input program. An alias analysis pass
provides a method to query if two SSA values x and y alias, and returns one of
three answers according to their aliasing state: NoAlias if x and y do not alias,
MustAlias if x and y are guaranteed to never alias, and MayAlias if x and y
might refer to the same memory location or object.

define i1 @load_fold(i64* %x, i64 %l) {

entry:

%0 = load i64, i64* %x, align 8

%and = and i64 %0, %l

%tobool = icmp ne i64 %and, 0

ret i1 %tobool

}

%1:gr64 = COPY $rsi

%0:gr64 = COPY $rdi

TEST64mr %0, 1, $noreg, 0, $noreg,

%1, implicit-def $eflags

:: (load 8 from %ir.x)

%2:gr8 = SETCCr 5, implicit $eflags

$al = COPY %2

RET 0, $al

Fig. 3: MIR load annotation example.

To be able to consider target-specific details, we implement our analysis pass
at the LLVM Machine IR (MIR) level. MIR is LLVM’s machine-specific inter-
mediate representation, which provides analysis and transformation mechanisms
similar to those available at the LLVM IR level. Alias information is forwarded
to MIR from LLVM IR by using instruction annotations that build a correspon-
dence between low-level instructions and LLVM IR operations. Figure 3 shows
an example LLVM IR module next to the MIR code generated by the instruction
selector. A load annotation is inserted at the end of the TEST64mr instruction
that links the low-level memory load to the %x SSA value in the original module.
By exploiting such annotations as well as target-specific knowledge about some
instructions (e.g., load and store width, implicit loads and stores), we can take
full advantage of an alias analysis that operates at the LLVM IR level and use
its results lower in the compilation pipeline.

2.3 Static memory dependence analysis

Our pass runs just before target assembly code generation, which allows us to
make sure that we have access to the code after the compiler has applied all
optimization passes, including MIR-level optimizations. We distinguish three
different types of load instructions. We consider a load to be ret-like if it is
an implicit load that does not alias with any store instruction in the generated
assembly, under a few safe assumptions about compiler-generated code. Stack
load instructions like pop and leave read values from the stack exclusively. Ex-
plicit loads encompass all the instructions that explicitly access memory through

Static Memory Dependence Analysis for Hardware Optimizations 7

a memory operand. The remaining loads implicitly read from memory and are
conservatively marked with an alias distance of zero.

We perform identical computations for explicit loads and ret-like loads, with
the particularity that for the latter we consider that the load does not alias with
any store in the same machine function. We can safely make this assumption
for compiler-generated code for non-malicious programs, since overwriting the
return address would cause several security issues [11]. For loads from the stack,
we keep track of the depth of the stack by updating a depth value for each
stack-manipulating instruction: an alias is found when the sign of the stack
depth changes.

The alias distance computation function is described in algorithm 1 (ap-
pendix A). To get the alias distance for a given load L, we perform a depth-first
traversal of the reversed control-flow graph (CFG), starting at L and working
towards the machine function’s root by visiting each instruction on the path
until we find an alias. If L aliases with a store S in the same basic block, then
we can directly set the alias distance D to the number of stores between L and
S. If L’s parent block B has two or more successors, we compute the number of
non-aliasing stores on each path from L to an aliasing store and return the mini-
mum of those values. In order not to loop indefinitely during the CFG traversal,
we traverse back-edges at most once, and only if their origin is reachable from
B. We find the back-edges and compute the associated reachability information
using the dominator tree of the current machine function as well as a special-
ized LLVM structure that records low-level loop information, which is retrieved
a the beginning of the analysis. To avoid expensive computations, we compute
the reachability information only once for each basic block in the function. This
approach is made possible by the intrinsic structure of the LLVM MIR repre-
sentation, which does not allow arbitrary control flow incoming a block. Instead,
each instruction in a basic block is guaranteed to dominate all the instructions
contained in basic blocks dominated by its parent. The worklist used during the
CFG traversal records the current instruction as well as the distance that was
computed so far on the currently traversed path. The AssignDistance function
makes sure that we do not change the value of D if d > D and is used to perform
additional checks when handling loops, as described in section 3.2.

The table in figure 4 gives an example of the alias distance D computed by our
pass for a few load-store pairs from the given CFG. If we assume that L0 aliases
with S14, then we traverse two different paths in the CFG. The first path goes
through blocks {0, 1, 2, 4, 5} and the second one through blocks {0, 1, 3, 4, 5}. In
the first case, the alias distance is 9, and in the second one, it is 10. The SMDA
pass marks L0 with a distance of 9. Note that we do not traverse the back-edge
from block 1 to block 4 since its origin does not dominate the parent block of
L0. A similar reasoning obtains the other distances in figure 4.

The heart of the alias analysis is performed using target-specific informa-
tion alongside high-level alias information. Algorithm 2 (appendix A) gives an
overview of the alias checking algorithm. First, we check whether the I and L
instructions can alias by making sure that they access memory. Sometimes the

8 Jean-Michel Gorius

Load Aliasing Stores D

L0 {S14} 9
L0 {S5, S11} 4
L1 {S3} 2
L1 {S12} 7
L3 {S1, S14} 0
L5 ∅ 0

1

S3

S2

S1

Load L1

2

S6

S5

S4

Load L2

3

S10

S9

S8

S7

0
Load L0

S0

4

S13

Load L4

Load L3

S12

S11

5
Load L5

S14

Fig. 4: Example alias distance computation by the SMDA pass.

target can determine if two memory accesses are disjoint by using target-specific
information about the ISA. The MemAccessesAreDisjoint function ensures that
we do not perform unneeded computations if the target can readily determine
if there can be no alias between L and I. After performing these initial checks,
we loop over all combinations of memory operands from L and I to find a po-
tential alias. Since querying the alias analysis can be expensive, we further rely
on target-known information to exclude common cases.

The first common case arises when either I or L accesses a pseudo-location. A
pseudo-location is a virtual memory location that the compiler uses to represent
memory areas not known by the LLVM IR. These locations include the function’s
stack frame (e.g. an access to a spill slot), the area below the stack frame (e.g.
argument space) and the function’s constant pool. If L or I accesses such a
pseudo-location, we fall back to the LLVM-provided MayAliasPseudo function.
The latter uses the machine function’s frame information to determine if the
pseudo-value can alias with another value or not. If not, we proceed to the next
pair of memory operands. If the base addresses of two memory operands ML and
MI is known to be the same, or if they access the same pseudo-location, then we
can quickly determine if there is an alias by checking if the two memory locations
overlap. The last remaining case arises when the base addresses of the memory
accesses are different. In this case, we cannot straightforwardly determine if there
is an alias, so we query the alias analysis for MI and ML’s aliasing status.

Static Memory Dependence Analysis for Hardware Optimizations 9

3 Discussion

Several challenges emerge when trying to analyze code using the approach ex-
posed in section 2.3. The static memory dependence analysis pass implicitly
relies on the compiler infrastructure to provide accurate and complete infor-
mation regarding instructions, which may not always be available. Section 3.1
discusses some of the issues we faced when designing our analysis pass. In order
to increase the accuracy of our analysis, we have to take loops into account when
computing alias distances. Section 3.2 exposes some of the tradeoffs that go into
implementing proper loop handling. The implementation detailed in section 2.3
focuses on the MayAlias metric. Section 3.3 exposes the key differences between
the MayAlias and MustAlias metrics in the SMDA pass.

3.1 Dealing with incomplete load and store information

The LLVM compiler infrastructure provides a variety of different low-level trans-
formation passes that operate on the MIR. These passes modify existing instruc-
tions, remove some of them, insert new ones and update the associated metadata
accordingly. However, information can sometimes be lost during such a transfor-
mation. Our analysis pass conservatively handles instructions that are known to
be loads or stores from the x86 ISA specification but are not reported as loads
or stores by LLVM. At the time of this writing, information loss often occurs
when the compiler backend optimizes away stack allocations that were inserted
as part of a function’s prologue to accommodate local parameter storage. In case
a load instruction is not reported as accessing memory by LLVM, the SMDA
pass marks it with an alias distance of zero. For store instructions, we currently
consider them as aliasing with every load if the compiler does not report them
as writing to memory. This approach results in a slight loss of precision in our
markers but preserves their correctness.

3.2 Handling loops

The alias distance computation described in section 2.3 is slightly simplified. The
SMDA pass integrates a mechanism to detect and mark loops, and to report a
special alias distance D? in case there is a loop on the path from an aliasing
store S and the load L to mark. The hardware can use the loop entry and exit
markers to record the amount of executed stores in a loop and its trip count.
With this information, whenever the processor executes a load marked with D?,
it can retrieve the amount of non-aliasing stores from the last executed loop. By
doing so, we assume that the number of non-aliasing stores in a loop will likely
be significantly larger than the number of non-aliasing stores on the path from
S to L outside of the loop.

3.3 MustAlias analysis

We conduct a static dependence analysis for both MayAlias and MustAlias

metrics based on compiler-provided alias information. The latter metric is more

10 Jean-Michel Gorius

aggressive and can provide us with more accurate results in some cases. The
main difference between the MayAlias and MustAlias analyses resides in the
way we implement the alias query function (algorithm 2). While the procedure
exposed in section 2.3 describes how we find stores that may alias with a given
load, when looking for must-alias stores, we try querying the alias analysis even
in the case where the base address or width of the access is unknown. In case
there is no alias information available, we consider that S and L do not alias.

4 Validation

To validate our results and compare the marked alias distances with the expected
alias distances at run-time, we develop a plugin for Intel PIN [10], a tool that
allows us to instrument the binaries generated by our modified version of clang
with instruction-level granularity. Section 4.1 briefly presents the operation of
our plugin and section 4.2 exposes and comments on results obtained using this
tool.

4.1 Dynamic binary instrumentation

Our PIN plugin analyzes the given binary before executing it, inserting pred-
icated calls to routines that register memory accesses for each load and store
instruction in the program. The binary is then executed and its execution flow
is diverted each time it encounters a memory accessing instruction. In the case
of a store, it records the store location into a ring buffer representing the store
queue. When executing a sequence of load marking instructions, the alias dis-
tance is recorded and passed to the next predicated call that registers a load
instruction. This call checks if the load address is found in the store buffer and,
if so, indicates whether the marked alias distance is less than or equal to the
distance to the nearest aliasing store in the store buffer. The size of the store
buffer is configured for both the SMDA pass and the validation tool, and all
alias distances are clamped to this value in the compiler.

The results presented in section 4.2 were obtained by running benchmarks
instrumented by the tool described in the preceding paragraph. Because of such
instrumentation’s dynamic nature, we can report results only for instructions
that are encountered during a particular execution of the benchmark. Going
back to the CFG in figure 4, if we assume that, for a given program execution,
the dashed edges are never executed, load L2 will not be reported as marked by
the validation tool.

4.2 Evaluation

We evaluate our static memory dependence analysis pass on two sets of bench-
marks: the Splash-3 [12] and SPEC CPU 2017 [1] benchmark suites. All results
were obtained using the SMDA pass based LLVM version 11.0.0git-931a68f.

Static Memory Dependence Analysis for Hardware Optimizations 11

Benchmark Loads Marked 0 Marked 1–5 Marked 6–25 Marked 26–99 Marked D?

(% total instr.) (% total loads) (% total loads) (% total loads) (% total loads) (% total loads)

perlbench 16.775 70.620 28.415 0.965 0 0
gcc 11.682 76.621 20.892 2.403 0.042 0.042
mcf 15.054 93.736 5.291 0.010 0 0.963
lbm 14.882 67.083 14.208 18.709 0 0
omnetpp 10.851 74.915 19.773 5.247 0.065 0
xalancbmk 14.821 86.150 12.944 0.865 0 0.042
deepsjeng 13.951 80.437 15.645 3.892 0 0.026
imagick 8.705 98.818 1.073 0.048 0 0.060
leela 14.441 81.846 15.654 2.500 0 0
nab 14.504 87.470 12.062 0.430 0.037 0.001
xz 11.668 77.355 19.999 1.727 0 0.919

Table 1: MayAlias results for C/C++ SPEC CPU 2017 benchmarks.

Table 1 gives an overview of the marker distribution for SPEC CPU bench-
marks using the MayAlias metric. In most cases, we notice that load instructions
represent up to 15% of the total number of executed instructions. Improving the
store queue mechanism described in section 1.2 can thus have a significant im-
pact on the overall execution of a program, which further motivates the need
to develop scalable load/store handling mechanisms. Even with a conservative
handling of alias information, we are still able to show that, in nearly all bench-
marks, more than 12% of executed loads could bypass at least one aliasing check
in the store queue. In some particularly favorable cases such as for the lbm ex-
ecutable, nearly 20% of loads can skip at least five store queue entries, which
represents 10% of the size of the store queue in Skylake-based processors and
more than 15% for Haswell platforms. We also note that the amount of loop
markers D? is not significant in our measurements for the MayAlias metric.

Benchmark Loads Marked 0 Marked 1–5 Marked 6–25 Marked 26–99 Marked D?

(% total instr.) (% total loads) (% total loads) (% total loads) (% total loads) (% total loads)

barnes 15.550 22.619 73.006 4.199 0.176 0
fmm 6.478 41.191 48.066 10.694 0.043 0.006
ocean (cont.) 14.589 8.456 40.684 31.562 10.086 9.212
ocean (non-cont.) 15.874 36.535 29.674 4.984 6.857 21.949
radiosity 13.505 32.988 59.143 6.568 1.301 0
volrend 10.775 6.523 15.846 44.528 33.103 0
cholesky 11.429 14.573 28.700 52.116 4.610 0
fft 5.273 2.232 74.714 18.873 4.181 0
lu (cont.) 11.183 4.052 8.440 24.384 63.093 0.031
lu (non-cont.) 11.845 1.671 8.824 14.801 74.605 0.099
radix 6.422 43.696 0 18.719 37.585 0

Table 2: MustAlias results for Splash-3 benchmarks (error rate < 2%).

12 Jean-Michel Gorius

The conservative nature of the MayAlias analysis limits the amount of in-
formation we can gain from it when targeting larger marker values. Table 2
illustrates how the MustAlias metric can help us achieve higher marking dis-
tances with the help of the compiler. Since this analysis handles aliases more
aggressively, it can sometimes introduce marking errors in the binary. In our
experiments, we record an erroneous marking rate of less than 2% overall, and
less than 0.5% on average. Our results show that in nearly all cases, more than
60% of loads can skip at least one entry in the store queue, and more than 10%
of them can skip the first five entries. We notice that in quite a few benchmarks,
nearly half of a typical store queue with 56 entries can be skipped by more than
30% of the program’s loads. Even though the MustAlias marking strategy is
more aggressive, we observe that the number of D? distances stays near zero in
most benchmarks. This suggests that the loop handling described in section 3.2
could likely be skipped to further reduce area cost and design complexity.

5 Conclusion and future work

The memory disambiguation logic is one of the least scalable parts in modern
processor architectures. Several techniques have been developed to try to reduce
the complexity of the store queue and improve the scalability of the processor. In
this report, we presented a collaborative approach that allows us to leverage the
alias analysis performed by the compiler to lift memory disambiguation from
hardware to software. We showed that a significant portion of the program’s
loads could benefit from bypassing aliasing checks in the store queue.

Future work will focus on both the software and hardware aspects of this
project. On the compiler side, extending the existing analysis pass to support
inter-procedural alias queries would allow us to produce more accurate markers
by modeling the actual flow of instructions more precisely. Work has started on
implementing the logic to support our load markers in the SNIPER hardware
simulator.

Acknowledgements

First and foremost, I would like to thank my supervisors, Alexandra Jimborean
(Uppsala University, Sweden) and Alberto Ros (University of Murcia, Spain), for
their insights and support during the development of this project. I feel lucky to
have been able to continue to work remotely during this internship despite recent
events. This project will serve as a starting point for Sawan Singh (University of
Murcia, Spain) in his work on compiler-assisted hardware optimizations. I would
like to thank him for his patience during the SMDA debugging sessions and wish
him success during his PhD. at the University of Murcia.

References

1. Bucek, J., Lange, K.D., v. Kistowski, J.: Spec cpu2017: Next-generation compute
benchmark. In: Companion of the 2018 ACM/SPEC International Conference on

Static Memory Dependence Analysis for Hardware Optimizations 13

Performance Engineering. p. 41–42. ICPE ’18, Association for Computing Machin-
ery, New York, NY, USA (2018). https://doi.org/10.1145/3185768.3185771

2. Chrysos, G.Z., Emer, J.S.: Memory dependence prediction using store sets.
In: Proceedings of the 25th Annual International Symposium on Computer
Architecture. p. 142–153. ISCA ’98, IEEE Computer Society, USA (1998).
https://doi.org/10.1145/279358.279378

3. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: An efficient
method of computing static single assignment form. In: Proceedings of the 16th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
POPL ’89, ACM Press, New York, NY, USA (1989)

4. Hennessy, J.L., Patterson, D.A.: Computer Architecture, Sixth Edition: A Quan-
titative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
6th edn. (2017)

5. Huang, R., Garg, A., Huang, M.: Software-hardware cooperative memory disam-
biguation. In: The 12th International Symposium on High-Performance Computer
Architecture. pp. 244–253 (2006)

6. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: International Symposium on Code Generation and Op-
timization, 2004. CGO ’04, IEEE, Washington, DC, USA (2004)

7. Moshovos, A., Breach, S.E., Vijaykumar, T.N., Sohi, G.S.: Dynamic specula-
tion and synchronization of data dependences. In: Proceedings of the 24th An-
nual International Symposium on Computer Architecture. p. 181–193. ISCA
’97, Association for Computing Machinery, New York, NY, USA (1997).
https://doi.org/10.1145/264107.264189

8. Moshovos, A., Sohi, G.S.: Speculative memory cloaking and by-
passing. Int. J. Parallel Program. 27(6), 427–456 (Dec 1999).
https://doi.org/10.1023/A:1018776132598

9. Park, I., Chong Liang Ooi, Vijaykumar, T.N.: Reducing design complexity of the
load/store queue. In: Proceedings. 36th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, 2003. MICRO-36. pp. 411–422 (2003)

10. Patil, H., Cohn, R., Charney, M., Kapoor, R., Sun, A., Karunanidhi, A.: Pinpoint-
ing Representative Portions of Large Intel Itanium Programs with Dynamic In-
strumentation. In: 37th International Symposium on Microarchitecture (MICRO-
37’04). pp. 81–92 (2004)

11. Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-oriented programming:
Systems, languages, and applications. ACM Trans. Inf. Syst. Secur. 15(1) (Mar
2012). https://doi.org/10.1145/2133375.2133377

12. Sakalis, C., Leonardsson, C., Kaxiras, S., Ros, A.: Splash-3: A properly synchro-
nized benchmark suite for contemporary research. In: 2016 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). pp. 101–
111 (2016)

13. Sha, T., K. Martin, M.M., Roth, A.: NoSQ: Store-load communication without
a store queue. In: 2006 39th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’06). pp. 285–296 (2006)

14. Thornton, J.E.: The CDC 6600 project. IEEE Ann. Hist. Comput. 2(4), 338–348
(Oct 1980). https://doi.org/10.1109/MAHC.1980.10044

14 Jean-Michel Gorius

A Algorithms

Algorithm 1: ComputeAliasDistance(L, TII, MFI, AAR)

1 /* L: Load instruction */

2 /* TII: Target instruction information */

3 /* MFI: Machine function frame information */

4 /* AAR: Alias analysis results */

5 D ←0; Skip ←false; WL ← {L, 0};
6 while WL is not empty do
7 E ← PopBack(WL);
8 (I, d)← (E.CurrInstr, E.CurrDist);
9 B ← GetParentBB(I);

10 while I does not refer to the start of B do
11 if MayAlias(I, L, TII, MFI, AAR) ∨ IsCall(I) then
12 AssignDistance(D, d); Skip ← true;
13 else
14 foreach memory operand m in I’s operands do
15 if m is a store then d← d + 1;
16 end
17 if d > D then Skip ← true, break;
18 I ← instruction preceding I in B;

19 end

20 end
21 if Skip then Skip ← false;
22 else
23 if B has no predecessors in F then AssignDistance(D, d) ;
24 else
25 foreach predecessor P of B in F do
26 if ((P , B) is not a back-edge) ∨
27 ((P is reachable from B) ∧ ((P , B) was never taken)) then
28 WL ← Append(WL, P .Last, d)
29 end

30 end

31 end

32 end

33 end
34 return D

Static Memory Dependence Analysis for Hardware Optimizations 15

Algorithm 2: MayAlias(S, L, TII, MFI, AAR)

1 /* S: Potential store instruction */

2 /* L: Load instruction */

3 /* TII: Target instruction information */

4 /* MFI: Machine function frame information */

5 /* AAR: Alias analysis results */

6 if S nor L loads from or stores to memory then
7 return false
8 else if both S and L don’t store to memory then
9 return false

10 else if MemAccessesAreDisjoint(TII, S, L) then
11 return false
12 end
13 Alias ← false;
14 foreach memory operand ML in L’s operands do
15 foreach memory operand MS in S’s operands do
16 BS,L ← base address of MS,L;
17 if BS or BS is unknown then return true;
18 OS,L ← offset from the base address for MS,L;
19 WS,L ← width of the access for MS,L;
20 moffset ← min(OS , OL);
21 if BS 6= BL then
22 if (MS accesses a pseudo-location PS) ∧ ¬ MayAliasPseudo(PS,

MFI) then
23 continue
24 end
25 if (ML accesses a pseudo-location PL) ∧ ¬ MayAliasPseudo(PL,

MFI) then
26 continue
27 end

28 end
29 if BS = BL ∨ PS = PL then
30 if WS or WL is unknown then return true;
31 Moffset ← max(OS , OL);
32 w ← if Moffset = OS then WS else WL;
33 if moffset + w > Moffset then return true else continue;

34 end
35 if there are no alias analysis results for ML and MS in AAR then
36 return true
37 end
38 if AAR does not contain NoAlias for the (MS, ML) pair then
39 return true
40 end

41 end

42 end
43 return false

