
Efficient GPU Computations of a Parallel Model
for Stencils

Jean-Michel Gorius

Univ Rennes, ENS Rennes – F-35000, Rennes, France
jean-michel.gorius@ens-rennes.fr

Supervisor:
Tobias Grosser

Scalable Parallel Computing Lab
ETH Zurich – Switzerland

Internship location and dates: ETH Zurich, 09/09/19–12/06/19

Abstract. Weather and climate models make extensive use of stencil
computations to model physical phenomena. These models have grown in
complexity over the past decades and make up large parts of today’s HPC
workloads. With new architectures switching to heterogeneous compute
nodes, climate models need to be compiled and optimized for accelera-
tor hardware. In this report, we present a compiler toolchain based on
MLIR specifically targeted at compiling stencil code for GPU accelera-
tors. We illustrate how we leverage the multi-level capabilities of MLIR
by representing stencils in a high-level intermediate representation and
subsequently lower this representation down to GPU code. We show that
our toolchain can compile the dynamical core of the European weather
and climate model.

Keywords: Stencils, MLIR, GPU, intermediate representation, LLVM,
climate and weather simulation, COSMO

1 Introduction

Climate science and weather simulation have gained a lot of attention during the
past decades. With more and more concerns being raised about global warming
and its implications, weather and climate modelling need to become more and
more accurate and reliable. The need for increased simulation accuracy has led
to the development of climate models targeting large-scale high-performance
computing (HPC) infrastructures. This section introduces the field of climate
and weather modelling (section 1.1) before discussing domain-specific compilers
designed to compile climate models for heterogeneous hardware (section 1.2).

1.1 Climate and weather modelling

To simulate climate and weather, scientists rely heavily on computational models
aimed at solving partial differentials equations (PDE) using numerical methods.

2 Jean-Michel Gorius

Over the past decades, the complexity of these models has been steadily increas-
ing alongside the available computational power, going from simple atmospheric
models [14] to fully-coupled models [9] that take into account interactions be-
tween land, ocean, human activity and the atmosphere.

Modern climate models are based on numerical methods such as finite dif-
ferences [5], finite volumes [18], and finite elements [6]. These methods use sten-
cil computations—element-wise computations on a grid accessing only a fixed
neighborhood of each grid cell—to compute approximate solutions to PDEs for
each simulation time step. The rapid increase in available compute power during
the last decades has enabled scientists to use very high-resolution grids to solve
increasingly complex differential systems. However, with the end of Dennard
scaling and the slow down of Moore’s law, HPC systems have started to move
towards heterogeneous compute nodes, with multi-core CPUs coupled to special-
ized accelerators. With the current and next generation of supercomputers [20,
16] providing several specialized hardware accelerators per node, the main tar-
get for high-performance climate and weather models is switching to accelerators
like GPUs [8, 3].

1.2 Domain-specific compilers

The move towards heterogeneous hardware leads to the introduction of a new
parallel programming model, with new opportunities for target-specific optimiza-
tions. On the other hand, the high-level concepts expressed in climate models
written and developed by domain scientists are target-agnostic, as they aim at
solving problems at a higher level of abstraction. Several domain-specific com-
pilers have been developed to bridge the gap between high-level domain-specific
concepts and low-level target-specific optimizations. This section gives a brief
overview of a few of these domain-specific compilers.

The Stencil Loop Language (STELLA) [12] introduces a high-level domain-
specific language (DSL) along with a compiler frontend. The STELLA fron-
tend takes the aforementioned DSL as an input and emits C++ template code,
generating efficient loops and memory access patterns depending on the target
architecture. This infrastructure is complemented by a modular code genera-
tion backend, which can emit CPU or GPU code. STELLA has been used for
production-level weather forecasting and modelling by the Swiss National Su-
percomputing Center (CSCS) and the Swiss Federal Office of Meteorology and
Climatology (MeteoSwiss) for many years.

Designed as a successor to STELLA, GridTools [19] takes a different ap-
proach and embeds a DSL directly in C++. GridTools makes heavy use of tem-
plate metaprogramming to transform the input code at compile-time, choosing
the appropriate data layout for the target architecture and providing high-level
abstractions for expressing complex stencil programs. To further lift the level of
abstraction at which the user has to work, MeteoSwiss together with CSCS, ETH
Zurich and Vulcan Inc. have invested in the development of GtClang/Dawn [15],
a source-to-source compiler based on GridTools which provides a high-level DSL
designed to express climate stencil codes. The use of STELLA, GridTools and

Efficient GPU Computations of a Parallel Model for Stencils 3

GtClang/Dawn requires climate models to be written in a DSL, whereas many
climate models are written in Fortran, with some existing models reaching sev-
eral million lines of code.

The large Fortran codebase of many climate models is built on top of decades
of legacy algorithms, developed and maintained by domain scientists. The CLAW
compiler [4] aims at easing the transition to heterogeneous compute nodes by
retaining Fortran as a base language and by providing a set of additional compiler
directives to be inserted in code. This approach makes it easy to port existing
code to new architectures without the need for deep code changes. Moreover, by
choosing to keep Fortran as a frontend language, the CLAW compiler focuses
on ease of adoption by a scientific community which has decades of experience
writing code in Fortran.

2 A multi-level compiler for climate stencils

Numerous domain-specific compilers have been developed for compiling stencil
code, with little or no code reuse at all. This creates an additional maintenance
cost for compilers targeting production-ready applications. Our work aims at
providing a common baseline for stencil compiler development and experimen-
tation centered around principles borrowed from the LLVM project. In the fol-
lowing section, we present a multi-level compiler infrastructure built on top of
the MLIR [13] framework. Our project builds upon lessons learned from previous
work [10] and aims at exploring new approaches for representing stencils in a
compiler IR.

2.1 A high-level intermediate representation for stencils

The following sections present a high-level intermediate representation developed
as an MLIR dialect. This IR is designed to be able to represent stencil programs
comprised of several calls to stencil functions, as is customary in climate and
weather models. By basing our work on MLIR, we make it easy to extend our
IR to accommodate other use cases. After describing how to express the itera-
tion domain of a stencil computation in our IR, the following sections focus on
common operations used to describe stencil programs, and on choices that we
have made to represent these in a compiler. We illustrate two main algorithmic
motifs that appear in climate code before discussing some of the limitations of
our approach. Section 2.2 focuses on the compilation pipeline, and especially on
lowering our high-level stencil IR all the way down to GPU code.

Defining iteration domains and fields Typical stencils can operate on reg-
ular grids [2] as well as on irregular grids [17]. Our work focuses primarily on
the regular case, which is at the core of many climate models. By restricting
ourselves to regular structures, we are able to infer more information about the
compiled code, and thus leverage more optimization paths when generating code
for GPUs.

4 Jean-Michel Gorius

Climate models often operate on 3-dimensional fields of scalar values. The
following examples will use 2-dimensional fields to make their representation
easier.

We represent the regular grids on which stencils operate by defining a custom
IR type, !stencil.field. MLIR allows types to be parameterized by compile-
time symbols and constants, as well as by other types. Our field type is pa-
rameterized by the type of the elements it contains. Figure 1 summarizes the
description of our field type and illustrates the correspondence between the IR
definition and the abstract representation of a field. To define such a field, we
introduce a custom operation which creates a field instance given a name, an
iteration domain and a boundary. The boundary is a set of points that are added
to the iteration domain to account for the shape of the stencil access pattern,
effectively preventing out-of-bounds accesses.

1 %is, %js = stencil.domain : index, index

2 %in = stencil.field "in" %is %js plus (-3,2) (0,1) : !stencil.field<f64>

(a) Defining a field in our IR.

�

�

��

��

Iteration	domain

Boundary	points

(b) Resulting field representation.

Fig. 1: Field definition.

Fields are used as input and output parameters for each stencil program.
To give the compiler more flexibility and to make the flow of data between
stencils more explicit, we introduce a second type, !stencil.view. A view is an
immutable reference to a subpart of a field. It can be read from, but never written
to. Similarly to fields, views are parameterized by an element type. Figure 2
shows an example of a view defined on a field. Note that views do not have
boundaries but can be defined to cover arbitrary hyper-rectangular parts of a
field, including its boundary.

Efficient GPU Computations of a Parallel Model for Stencils 5

�

�

View	outline

Fig. 2: Outline of a view defined on the field of figure 1.

Stencil kernels Stencil code is organized around a set of kernels that are exe-
cuted on multiple fields to produce one or more outputs. In our IR, we represent
individual kernels by functions operating on views. Figure 3 gives an example
of such a function for a simple Laplace operator kernel. Individual kernels ac-
cess their parameters using the access operation, which takes a view as well
as an offset and returns the corresponding element. Offsets are always defined
relatively to the current iteration position. This behavior is similar to kernels
written in CUDA C, where each thread can access data relative to the current
thread and block indices.

1 stencil.func @lap(%in : !stencil.view<f64>) -> f64 {

2 %0 = stencil.access %in[0, 0] : f64

3 %1 = stencil.access %in[1, 0] : f64

4 %2 = stencil.access %in[0, 1] : f64

5 %3 = stencil.access %in[-1, 0] : f64

6 %4 = stencil.access %in[0,-1] : f64

7 %cst = constant 4.0 : f64

8 %5 = addf %1 %2 : f64

9 %6 = addf %3, %4 : f64

10 %7 = addf %5, %6 : f64

11 %8 = mulf %cst, %7 : f64

12 %9 = subf %0, %8 : f64

13 stencil.return %9

14 }

(a) Defining the Laplace operator.

(b) The Laplace operator pattern.

Fig. 3: A simple Laplace operator.

6 Jean-Michel Gorius

To increase the composability of our stencil kernels, we introduce a call

operation, which applies a given kernel on one or more views, but by shifting
the current iteration position by a given offset. An example where this pattern
can be useful is given in figure 4. By using call, we can reuse the Laplace
kernel defined in figure 3 and build a more complex access pattern out of it.
This is a common idiom in stencil code and especially in climate code, where
an atmospheric parameter is computed using the same stencil kernel on all the
neighbours of the current iteration position.

1 stencil.func @laplap(%in : !stencil.view<f64>) -> f64 {

2 %0 = stencil.access %in[0, 0] : f64

3 %1 = stencil.call @lap(%in)[1, 0] : f64

4 %2 = stencil.call @lap(%in)[0, 1] : f64

5 %3 = stencil.call @lap(%in)[-1, 0] : f64

6 %4 = stencil.call @lap(%in)[0,-1] : f64

7 %cst = constant 4.0 : f64

8 %5 = addf %1 %2 : f64

9 %6 = addf %3, %4 : f64

10 %7 = addf %5, %6 : f64

11 %8 = mulf %cst, %7 : f64

12 %9 = subf %0, %8 : f64

13 stencil.return %9

14 }

(a) Laplace operator composition.

(b) Resulting access pattern.

Fig. 4: Composing stencils.

Writing stencil programs Iteration domains, fields and kernels are the basic
building blocks used to define stencil programs. The usual flow of such a program
is as follows: load data from the input fields, apply a series of kernels on the input
data, merge the results and store them to the output fields. Figure 5a shows an
example of a simple stencil program that computes values sequentially on an
input field, and figure 5b illustrates how we can compute different values at the
bottom, in the middle and at the top of the iteration domain.

To load data from an input field and create a view on it, our IR introduces
a load operation. This operation creates a handle to the input field, which will
be used by subsequent computations on this field. Note that we do not specify
any dimensions or offset for the view. Usually, when writing stencil kernels, the
user only knows the size of the desired output. We provide a compiler analysis
pass that infers the shapes and offsets of each view in a stencil program based
on the desired output shape. This gives our compiler a lot of flexibility when
it comes to splitting or merging computations, as it can split and merge input

Efficient GPU Computations of a Parallel Model for Stencils 7

1 %1 = stencil.load %in : !stencil.view<f64>

2 %2 = stencil.apply @first_kernel(%1) : !stencil.view<f64>

3 %3 = stencil.apply @second_kernel(%2) : !stencil.view<f64>

4 stencil.store %3 to %out[0:%is,0:%js]

(a) Applying stencils sequentially.

1 %1 = stencil.load %in : !stencil.view<f64>

2 %t = stencil.apply @top(%1) : !stencil.view<f64>

3 %m = stencil.apply @middle(%1) : !stencil.view<f64>

4 %b = stencil.apply @bottom(%1) : !stencil.view<f64>

5 %5 = stencil.combine %t[0:%is,%js-2:%js],

6 %m[0:%is,3:%js-2],

7 %b[0:%is,0:3] : !stencil.view<f64>

8 stencil.store %5 to %out[0:%is,0:%js]

(b) Splitting the application domain.

Fig. 5: Example stencil programs.

views depending on the most efficient data representation. The output shape is
defined in the store operation, which takes a view to store to a given output
field and targeting a given domain size. The domain is defined using a syntax
similar to Python ranges, where the form [b:e] defines the half-open integer
range [b, e).

Applying stencil kernels to a set of input fields is handled by the apply

operation. This operation takes a kernel name (or symbol) as an input, as well
as a list of arguments to pass to the kernel. We can think of apply as being
similar to a CUDA kernel call: it abstracts away a loop nest that applies the
kernel on the entire computation domain and returns a view containing the
result of the stencil computation at each iteration point.

The last operation that appears in figure 5b is combine. The combine op-
eration takes a list of views associated with domains and combines them into
a single view. Conceptually, combine can be seen as building a view V from
several blocks forming a partition of V . Figure 6 shows the view produced by
the call to combine in figure 5b.

Dealing with vertical dependencies Climate models rely on two main algo-
rithmic motifs: horizontal stencils and vertical solvers. In the context of climate
modelling, a stencil is an element-wise computation that accesses a fixed set of
neighbours, with no vertical dependencies. On the other hand, vertical solvers
are used to solve tridiagonal systems of PDEs and operate on the vertical dimen-
sion of the atmosphere. They introduce vertical dependencies between multiple
computation layers. Even though they operate in essentially the same way as

8 Jean-Michel Gorius

�

�
�

�

�

Fig. 6: Combining multiple views.

stencils, solvers often receive a special treatment in climate code, as they cannot
easily be parallelized.

We chose to make the use of vertical solvers explicit in our IR by introducing
a sequential loop construct named for. An example of vertical solver can be
found in figure 7. The for operation introduces an iteration variable named %j

that traverses the range [1:%js]. The iteration variable is used in the body of
the for operation to extract layers from views using the combine operation. The
(%a=%2) construct that precedes the operation body introduces an accumulator
view. This view is initialized with the content of %2 and is then used to carry
out the computation for one iteration. At the end of the for operation’s body,
the yield operation yields a new value for the accumulator, which is used in the
next iteration.

1 %1 = stencil.load %inout : !stencil.view<f64>

2 %2 = stencil.apply @bottom(%1) : !stencil.view<f64>

3 %3 = stencil.for [%j=1:%js] (%a=%2) {

4 %b = stencil.apply @main(%1, %a) : !stencil.view<f64>

5 %c = stencil.combine

6 %a[0:%is,0:%js]

7 %b[0:%is,%j:%j+1] : !stencil.view<f64>

8 stencil.yield %c

9 }

10 stencil.store %3 to %inout[0:%is,0:%js]

Fig. 7: Example of a vertical solver.

Efficient GPU Computations of a Parallel Model for Stencils 9

Discussion The operations described in the previous section form a dialect in
MLIR that is suitable to represent a vast majority of commonly used stencil
codes. However, it comes with a few limitations. By focusing on climate stencil
code, we make some assumptions about the computational patterns that can
arise in the compiled code. For example, we implicitly assume that stencil kernels
operate solely on their input parameters and return one or more views. This is
the most common use case for stencils, but it can sometimes be useful to alter
some kind of global state inside of a kernel. We deliberately chose not to handle
this case, as it makes data flow analysis much harder by introducing side effects.

Another limitation arises from the way we chose to handle domain sizes.
By inferring the shapes of the views used in stencil programs from the shape
of the output fields, we assume that the input fields are large enough for the
computation to be carried out without any out-of-bound accesses. This choice
shifts the responsibility of ensuring that enough input memory is allocated to the
user. We chose to not enforce this requirement in our compiler, as stencil code is
often meant to be interfaced with some external code that provides the input and
output fields and handles the general control flow for the entire computation.
In the future, we might envision adding support for control flow operations
in our dialect as well as facilities to allocate memory, effectively enabling the
compilation of full climate models, including their control logic.

2.2 Compiling stencil code for accelerators

The MLIR infrastructure is well-suited for domain-specific applications, allowing
users to define their own intermediate representations and making it easy to work
at multiple levels of abstractions in the same compiler IR. We take advantage of
this approach by progressively lowering the stencil dialect defined in section 2.1
to GPU code while applying multiple rounds of optimizations at various levels
of abstraction, effectively writing trans-abstraction optimization passes.

The design of our stencil IR allows us to operate on very high-level con-
cepts and to optimize them without having to deal with low-level target-specific
details. We can therefore reorder stencil kernels, fuse or split them, or inline
function calls while staying at a high-level of abstraction. Once those high-level
optimizations are applied, we lower our stencil IR to a mix of affine loops and
basic stencil operations. Affine loops are provided by MLIR in the form of yet
another dialect: the affine dialect. The latter provides a simple abstraction to
model polyhedral transformations on programs. Contrary to other polyhedral
optimization frameworks such as Polly [11], MLIR takes a top-down approach
on polyhedral transformations: where tools like Polly try to recover high-level
information from the compiler IR (e.g. the LLVM IR), MLIR allows the compiler
to work on a high-level loop representation before going down to a more low-level
IR. This approach makes it easier to work on loop patterns, which are explicitly
represented in the IR by loop operations, rather than trying to recover a loop
structure from a set of low-level operations. Going down from the stencil dialect
to the affine dialect enables us to reuse the optimization passes developed by the

10 Jean-Michel Gorius

MLIR team to process loops, such as loop tiling, loop fusion and loop-invariant
code motion.

The affine dialect and the remaining stencil operations are then translated
to so-called standard operations, which are part of MLIR’s core standard di-
alect. This dialect models low-level concepts and basic operations such as integer
and floating-point arithmetic as well as memory access through a set of mini-
mal abstractions called memory references. At this point in the compilation
pipeline, the high-level information encoded in our stencil dialect has been en-
tirely translated to low-level operations. We can now fully take advantage of the
existing lowering, transformation and optimization passes provided by MLIR to
target either CPUs by using the provided conversion from standard operations
to LLVM IR, or GPUs by lowering to the MLIR GPU dialect. We chose GPUs
as our main target, as the capabilities of such accelerators can be leveraged to
execute massively parallel stencil computations such as the horizontal stencils
found in climate models. Once the relevant standard operations are converted
to operations from the GPU dialect, MLIR offers to target NVIDIA hardware
by translating the MLIR GPU dialect to LLVM NVVM operations, or to target
AMD hardware by using the LLVM ROCDL support. We also wrote a custom
CUDA C backend for MLIR to make it easier to see and debug our compilation
pipeline. Additionally, this backend is used in the following section to compare
our code generation against the GtClang/Dawn compiler output.

3 Validation

In order to validate our design and to set clear performance goals for future
developments of our toolchain, we developed a proof-of-concept compiler based
on the ideas described in the past sections. In this section, we demonstrate that
our toolchain is able to compile the entire COSMO dynamical core [1]. We further
give some insights into the current performance of our compiler by comparing
it to the GtClang/Dawn infrastructure described in section 1.2. GtClang/Dawn
is currently used by MeteoSwiss, CSCS and Vulcan Inc. to compile and run the
COSMO dynamical core on the Piz Daint supercomputer [7].

To be able to compile the COSMO model, which is implemented in the
GtClang/Dawn DSL, we implemented an adaptor that translates from the Gt-
Clang/Dawn internal representation to a prototype version of our stencil IR. This
IR models a subset of the concepts we describe in section 2.1 and is intended to
be entirely replaced by the latter in the very near future.

The dynamical core of the COSMO model is comprised of a large set of
stencil kernels, ranging from horizontal diffusion computations to large-scale
vertical solvers computing vertical atmospheric advection phenomena. Figure 8
show the relative performance of our generated GPU code compared to the
GtClang/Dawn output. All the measurements were realized on a common at-
mospheric grid size of 128x128x80 cells using the nvprof profiler with CUDA
10.2 on a NVIDIA Quadro M1200 GPU (Maxwell architecture), and by using
the CUDA backend of both compilers.

Efficient GPU Computations of a Parallel Model for Stencils 11

ad
ve

ct
io

n-
pp

tp

di
ab

-l
at

en
t-

he
at

fa
st

-w
av

es
-Q

-c
on

d

fa
st

-w
av

es
-s

c-
lh

s

fa
st

-w
av

es
-s

c-
pr

ep
ar

e-
lh

s

ho
ri

zo
nt

al
-a

dv
ec

ti
on

ho
ri

zo
nt

al
-a

dv
ec

ti
on

-p
pt

p

ho
ri

zo
nt

al
-a

dv
ec

ti
on

-u
v

ho
ri

zo
nt

al
-a

dv
ec

ti
on

-w
w

co
n

ho
ri

zo
nt

al
-d

iff
us

io
n

ho
ri

zo
nt

al
-d

iff
us

io
n-

lim
it

er

ho
ri

zo
nt

al
-d

iff
us

io
n-

sm
ag

ho
ri

zo
nt

al
-d

iff
us

io
n-

ty
p
e2

-f
ul

l
la

te
nt

-h
ea

ti
ng

sa
tu

ra
ti

on
-a

dj
us

tm
en

t

ve
rt

ic
al

-a
dv

ec
ti

on
-p

pt
p

ve
rt

ic
al

-a
dv

ec
ti

on
-u

ve
rt

ic
al

-d
iff

us
io

n-
sp

pt
uv

t

0.6

0.8

1

1.2

1.4

1.6

1.27

1.34

1.45

1.55

1.15

1.38
1.41

1.37

1.44

1.32

1.13

1.2

1.32

1.45

1.23

1.56

1.48

1.33

R
el

a
ti

v
e

sp
ee

d
u
p

MLIR CUDA backend

GtClang/Dawn CUDA backend

Fig. 8: Relative speedup of the GtClang/Dawn output compared to our MLIR
implementation.

The plot in figure 8 shows the expected speedup we could gain by imple-
menting the optimizations performed by the GtClang/Dawn toolchain. We plan
to implement these optimizations in subsequent iterations of our toolchain. The
biggest difference between our toolchain and the GtClang/Dawn compiler is the
way we handle vertical dependencies. In its current state, our compiler sepa-
rates each layer of the vertical computation in its own GPU kernel, which makes
the execution of vertical solvers sequential. On the other hand, GtClang/Dawn
detects vertical solvers that can be executed in parallel and generates a fused
kernel that executes most of the computation in parallel. Only the remaining de-
pendent code segments are executed sequentially. A speedup of more than 30%
in figure 8 is almost always the symptom of vertical solvers that can be partially
executed in parallel.

Another important class of optimization that our compiler does not perform
at the time of this writing is memory layout transformations and shared memory

12 Jean-Michel Gorius

allocation. Stencil computations in climate code are often memory-bound, and
we expect memory optimizations to provide an additional 30% speedup over the
current execution time. In the future, we plan to implement data layout transfor-
mation passes to generate efficient coalesced memory accesses as well as passes
to select the type of memory each field should be stored in for a given part of the
computation (global memory vs. shared memory). To further optimize memory
accesses, we plan to introduce register buffering. This optimization makes use of
a circular buffer of registers to store values retrieved from accesses to sequential
elements in memory by multiple iterations of a loop. For example, instead of
reading the value of a field at indices i and i+1 from memory at each iteration,
we read the element at index i+1 and store it in a buffer of two registers, shifting
the contents of the latter by one. By doing so, we divide the number of memory
accesses by a factor of two.

Our work lays down the foundations for the development of a multi-level sten-
cil compiler for climate, which opens up several routes for further improvement
of the optimization process at many different levels of abstraction.

4 Conclusion and future work

Stencils are at the core of many computational domains. Several domain-specific
compilers targeted at optimizing stencil codes have been developed, often in
close relationship to a domain-specific language. In this report, we presented
a frontend-agnostic compiler infrastructure for compiling stencil code targeting
GPU accelerators. By representing stencil constructs in a high-level compiler
intermediate representation, we are able to optimize code using domain knowl-
edge before going down to lower-level IRs. This approach allows us to leverage
trans-abstraction optimizations which can tailor high-level constructs to the final
target machine with great flexibility. We developed a proof-of-concept toolchain
which is able to compile the dynamical core stencils of the European climate
model, and we set a clear goal for performance improvements and optimization
development.

Future work will focus on finalizing the transition from our prototype IR to
the IR described in section 2.1 as well as on the implementation of high-level
optimization passes. We also expect low-level passes to be improved in the near
future as the needs of the MLIR community evolve to more HPC-focused appli-
cations. By building on top of the MLIR infrastructure, we will directly benefit
from these improvements in our toolchain without having to make important
changes. Eventually, the modular nature of our compiler toolchain will allow for
an easy exploration of new target architectures and optimization paths, e.g. by
using machine learning to select optimizations based on the input stencil and
the target platform.

Efficient GPU Computations of a Parallel Model for Stencils 13

Acknowledgements

First and foremost, I would like to thank my supervisor, Tobias Grosser (SPCL,
ETH Zurich, Switzerland), for his insights during the development of this project,
for his advice on research but also on team management, and for enabling me to
present our work at the MLIR4HPC workshop in Atlanta, GA. Large parts of
this project have been developed in close collaboration with Tobias Gysi (SPCL,
ETH Zurich, Switzerland), without whom our stencil dialect would probably not
look the same. Many thanks to him for taking part in the design of the stencil
IR and for bearing with me during our countless design meetings. I would like to
thank Tobias Wicky (Vulcan Inc.), Hannes Vogt (CSCS) and Matthias Roethlin
(MeteoSwiss) for their technical support and insights regarding GtClang and
Dawn, and for their attendance during the MLIR workshop that we organized
at ETH. Finally, I would like to thank the management teams at Vulcan Inc.,
MeteoSwiss and CSCS for enabling such a collaboration, particularly Oliver
Fuhrer (Vulcan Inc.), Carlos Osuna (MeteoSwiss) and Mauro Bianco (CSCS).

References

1. Baldauf, M.: The COSMO model: towards cloud-resolving NWP. In: Seminar on
Recent Developments in Numerical Methods for Atmosphere and Ocean Modelling,
2-5 September 2013. pp. 107–121. ECMWF, ECMWF, Shinfield Park, Reading
(2014)

2. Bianco, M., Varetto, U.: A Generic Library for Stencil Computations. CoRR (2012)

3. Brown, N., Nigay, A., Weiland, M., Hill, A., Shipway, B.: Porting the microphysics
model CASIM to GPU and KNL Cray machines. In: Proceedings of the Cray User
Group (2017)

4. Clement, V., Ferrachat, S., Fuhrer, O., Lapillonne, X., Osuna, C.E., Pincus, R.,
Rood, J., Sawyer, W.B.: The CLAW DSL: Abstractions for Performance Portable
Weather and Climate Models. In: PASC (2018)

5. Coiffier, J.: Fundamentals of Numerical Weather Prediction. Cambridge University
Press (2011)

6. Cotter, C.J., Shipton, J.: Mixed finite elements for numerical weather prediction.
Journal of Computational Physics 231(21), 7076–7091 (Aug 2012)

7. CSCS, ETH Zürich: “Piz Daint”, one of the most powerful supercomputers in the
world. Available at https://www.cscs.ch/computers/piz-daint/ (2019/12/10)

8. Cumming, B., Osuna, C., Gysi, T., Bianco, M., Lapillonne, X., Fuhrer, O.,
Schulthess, T.C.: A Review of The Challenges and Results of Refactoring the Com-
munity Climate Code COSMO for Hybrid Cray HPC Systems. In: Proceedings of
the Cray User Group (2013)

9. Delworth, T.L., Rosati, A., Anderson, W., Adcroft, A.J., Balaji, V., Benson, R.,
Dixon, K., Griffies, S.M., Lee, H.C., Pacanowski, R.C., Vecchi, G.A., Wittenberg,
A.T., Zeng, F., Zhang, R.: Simulated Climate and Climate Change in the GFDL
CM2.5 High-Resolution Coupled Climate Model. Journal of Climate 25(8), 2755–
2781 (2012)

10. Gorius, J.M.: Modeling Stencils in a Multi-Level Intermediate Representation
(2019)

14 Jean-Michel Gorius

11. Grosser, T., Groesslinger, A., Lengauer, C.: Polly — Performing Polyhedral Opti-
mizations on a Low-Level Intermediate Representation. Parallel Processing Letters
22(04) (2012)

12. Gysi, T., Osuna, C., Fuhrer, O., Bianco, M., Schulthess, T.C.: STELLA: A Domain-
specific Tool for Structured Grid Methods in Weather and Climate Models. In:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. SC ’15, ACM Press, New York, NY, USA (2015)

13. Lattner, C., Shpeisman, T.: MLIR: Multi-Level Intermediate Representation for
Compiler Infrastructure. EuroLLVM 2019 (Apr 2019)

14. Manabe, S., Wetherald, R.T.: Thermal Equilibrium of the Atmosphere with a
Given Distribution of Relative Humidity. Journal of the Atmospheric Sciences
24(3), 241–259 (1967)

15. MeteoSwiss, CSCS, ETH Zürich, Vulcan Inc.: GTClang and Dawn. Available at
https://github.com/MeteoSwiss-APN/dawn

16. Oak Ridge National Laboratory: Frontier spec sheet. Available at
https://www.olcf.ornl.gov/wp-content/uploads/2019/05/frontier specsheet.pdf
(2019/12/10)

17. Opršal, I., Zahradńık, J.: Elastic finite-difference method for irregular grids. GEO-
PHYSICS 64(1), 240–250 (jan 1999)

18. Putman, W.M., Lin, S.J.: Finite-volume transport on various cubed-sphere grids.
Journal of Computational Physics 227(1), 55–78 (2007)

19. Thaler, F., Hoefler, T., Moosbrugger, S., Osuna, C., Bianco, M., Vogt, H.,
Afanasyev, A., Mosimann, L., Fuhrer, O., Schulthess, T.C.: Porting the COSMO
Weather Model to Manycore CPUs. In: Proceedings of the Platform for Advanced
Scientific Computing Conference. PASC ’19, ACM Press, New York, NY, USA
(2019)

20. The Top500 Project: Top500 lists. Available at
https://www.top500.org/lists/top500/ (2019/12/10)

