
Modeling Stencils in a Multi-Level Intermediate
Representation?

Jean-Michel Gorius1

Univ Rennes, ENS Rennes – F-35000, Rennes, France
jean-michel.gorius@ens-rennes.fr

Supervisor:
Tobias Grosser

Scalable Parallel Computing Lab
ETH Zurich – Switzerland

Internship location and dates: ETH Zurich, 05/15/19–07/26/19

Abstract. Stencil computations arise in a wide variety of applications,
from climate simulation to machine learning and image processing. In
this report, we present a compiler intermediate representation specifically
designed to express common constructs in stencil computational kernels.
We describe the underlying principles of this intermediate representation
and we show that it can be used to express complex stencils in the context
of climate and weather simulation.

Keywords: Stencils, intermediate representation, LLVM, MLIR, cli-
mate and weather simulation, COSMO

1 Introduction

Stencil computations are used extensively in a large number of fields, including
physical simulation and modeling, machine learning, computer vision and image
processing. Stencils and their applications have been extensively studied during
the last decades and are still at the core of many research problems. Their
ubiquity has led to the development of methods aimed at easing the expression
of stencil computations by domain scientists. The most prominent of those tools
are stencil domain-specific languages.

1.1 Stencil computations

This section gives a brief overview of stencils and stencil computations. It is far
from an exhaustive coverage of those topics and is only meant to give the reader
some background knowledge about the type of computations we will focus on in
the rest of this report.

? Joint research work with Nicolas Chappe, ENS Lyon, and the Swiss Federal Office
of Meteorology and Climatology (MeteoSwiss).



2 Jean-Michel Gorius

Computational kernels can be divided in several categories, one of which is
stencil kernels. A stencil kernel is an iterative kernel that traverses a grid and
updates each grid cell according to the values of adjacent cells. Those adjacent
cells are accessed according to a fixed pattern called the stencil. Stencils can be
used on regular grids [5] as well as on irregular grids [13] and are often associated
with differential calculus and numerical solving of ordinary or partial differential
equations [16].

(a) Initial setup. (b) 500 iterations. (c) 1000 iterations.

(d) 1500 iterations. (e) 2000 iterations.

Fig. 1: Sample run of a Jacobi stencil over a 2-dimensional grid.

To get more familiar with the basic principles of stencils, let us consider an
example of partial differential equation solving using an iterative stencil kernel.
Let F : R2 → R be a real-valued C2 function over a 2-dimensional space. Consider
the second-order partial differential equation defined by

∂2F

∂x2
+

∂2F

∂y2
= 0. (1)

This kind of equation often arises in physical modeling problems such as heat
diffusion and electric potential distribution modelization. Given initial boundary
conditions, equation 1 can be solved iteratively by using a Jacobi stencil. The
Jacobi stencil kernel [7] is defined as follows for all cells (i, j) in a regular grid
G.

G′(i, j) =
1

4
(G(i− h, j) + G(i + h, j) + G(i, j − h) + G(i, j + h)) , (2)

where G′ is the output 2-dimensional grid and h is the size of a grid cell. Figure 1
illustrates the output of a sample run of the Jacobi stencil kernel. The iteration



Modeling Stencils in a Multi-Level Intermediate Representation 3

is computed on the domain D = [0, 1]2 with initial conditions such that

D(i, j) =

{
0 if 0 < i < 1 and 0 < j < 1,

1 otherwise.
(3)

Stencil code development often requires deep knowledge of the target appli-
cation domain. This domain-specific knowledge often requires a higher level of
abstraction to be easily expressible in source code. The need for new abstractions
has led to the development of numerous stencil-based domain-specific languages.

1.2 Stencil domain-specific languages

One of the primary purposes of domain-specific languages (DSL) is to raise
the level of abstraction at which the user of the language can express domain-
specific constructs [10]. In the case of stencil computations, this higher-level
of abstraction is crucial to enable domain scientists to develop custom stencil
kernels without having to delve into the implementations details inherent to this
kind of computations. Typical details one would like to avoid when developing a
stencil kernel include memory layout optimizations, data dependency resolution
and multi-stage splitting [4]. The following paragraphs give a broad overview of
stencil DSLs developed for various application domains, some of which are used
in production environments.

Image processing and computer vision make heavy use of stencil-based trans-
formation and analysis kernels [8]. Ragan-Kelley et al. [15] developed a fully-
featured optimizing compiler infrastructure built to support the Halide DSL.
Halide is an image processing DSL that enables the user to express image pro-
cessing pipelines in a high-level language. The underlying compiler implements
numerous optimization passes which allow it to produce very efficient compute
kernels.

Breaking the boundaries of a single application domain, complete software
platforms such as Simflowny [2], and later Simflowny 2 [3], aim at generalizing
compilation and optimization techniques for stencil DSLs to larger application
fields. In the case of Simflowny and Simflowny 2, the authors present a general-
purpose software platform broadly aimed at physical modeling and simulation.

Weather and climate simulation are a major user of stencil computations in
the context of High Performance Computing (HPC). Stencil DSLs specifically
targeted at climate and weather simulation applications, such as the Stencil
Loop Language (STELLA) [9] and GridTools [17], enable the user to express
complex computational patterns, abstracting away the convoluted optimizations
necessary to get the most out of the HPC clusters the simulations are being run
on. STELLA introduces a high-level DSL along with a compiler frontend which
takes this DSL as an input and emits C++ template code, generating efficient
loops and memory access patterns depending on the target architecture. This
infrastructure is complemented by a modular code generation backend, which
can emit CPU or GPU code. GridTools takes a different approach and embeds a
DSL directly in the C++ language. It is designed as a successor to STELLA [17]



4 Jean-Michel Gorius

and is developed by the Swiss National Supercomputing Center (CSCS) and the
Swiss Federal Office of Meteorology and Climatology (MeteoSwiss).

2 Background and motivation

A growing number of stencil DSLs are being developed and maintained along-
side completely dedicated compiler infrastructures. This leads to little or no
code reuse at all and creates an additional maintenance cost for DSLs aimed
at production-ready applications. Our work aims at providing a common base-
line for stencil DSL development and experimentation centered around prin-
ciples borrowed from the LLVM project. In the following sections, we give a
brief overview of the LLVM project (section 2.1) before introducing a multi-level
intermediate representation (MLIR) based around the key concepts of LLVM
(section 2.2). We make use of the MLIR infrastructure to build a custom com-
piler intermediate representation (IR) that is able to represent patterns and
constructs commonly found in stencil kernels.

2.1 The LLVM project

The LLVM project is a collection of modular and reusable components used to
create complete compiler infrastructures [11]. The key idea behind LLVM is the
use of a common intermediate representation, the LLVM IR, coupled with an
optimizer. What set the LLVM IR apart from other existing compiler IRs at
the time it was first introduced is its textual representation; LLVM IR can be
stored in a file in a textual form which is easily readable and understandable by
the compiler developers. This in turn makes it easier to debug and analyze the
results of transformation and optimization passes.

Clang	C/C++
frontend

Fortran
frontend

Haskell
frontend

LLVM	IR LLVM	ARM
backend

LLVM	MIPS
backend

LLVM	x86
backendC/C++	source

Fortran	source

Haskell	source

x86

ARM

MIPS

Machine	IR

Fig. 2: The LLVM architecture. Modular frontends generate LLVM IR, which is
then passed on to modular backends for machine code generation.



Modeling Stencils in a Multi-Level Intermediate Representation 5

Another key concept of the LLVM infrastructure is its modular architecture,
which is illustrated in figure 2. A set of different frontends can be plugged onto
the LLVM optimizer by generating LLVM IR and another set of architectural
backends can be added to perform architecture-specific optimizations as well as
code generation.

The architecture depicted in figure 2 is well-suited for languages like C or
Fortran, but it soon appeared that there was a need for some kind of higher-level
IR to ease the development of language-specific high-level optimization passes.
Languages like Swift, Rust and Julia have their own frontend to the LLVM
optimizer, but they also include additional intermediate representations before
generating LLVM IR, as shown in figure 3.

SIL	IR

MIR	IR

Julia	IR

LLVM	IR

Swift
frontend

HIR	IR

Julia
frontend

Machine
IR

Rust
frontend

Machine
code

Fig. 3: Modern languages introduce higher-level intermediate representations be-
fore going down to LLVM IR.

This new kind of compiler design, which makes use of several layers of in-
termediate representations, lowering from one to the other as the compilation
process goes on, is what inspired the development of MLIR, a multi-level inter-
mediate representation [12].

2.2 MLIR: a Multi-Level Intermediate Representation

Originally designed to be used in the TensorFlow environment [1, 12], MLIR (for
Multi-Level Intermediate Representation) is a compiler infrastructure built on
top of LLVM and aimed at easing the development of high-level IRs. It builds
upon lessons learned from the LLVM ecosystem and provides a robust set of
tools to design and prototype new compiler intermediate representations.

MLIR is a textual intermediate representation based on Static Single As-
signment (SSA) form [6], which means that values are defined and assigned to
only once in the entire program. SSA form is also used by the LLVM compiler
infrastructure, as it enables for easier optimization pass writing.

The core components of the MLIR infrastructure are presented in figure 4.
MLIR is built on top of the concept of dialects. A dialect is akin to a namespace
containing custom operations and custom types. When one develops an interme-
diate representation using MLIR, it usually takes the form a dialect. The basic



6 Jean-Michel Gorius

code units in MLIR are operations. An operation represents a given computation
and can take a number of operands and return zero, one or more results. Each
operation can have attributes attached to it. An attribute is a constant value
known at compile time and that can carry information relevant to the execution
and/or compilation context of its attached operation. Custom parsing, print-
ing and correctness verification methods can be attached to any given MLIR
operation.

MLIR

Dialect
Operations

Parsing

Printing

Verification

Attributes

Transformation

Lowering Translation

Fig. 4: The MLIR infrastructure.

In addition to giving the user a way to represent custom operations and
types, MLIR provides facilities to implement rewriting passes. Those passes can
be divided in two categories: transformation passes and lowering passes. A trans-
formation pass takes MLIR code as an input and rewrites the operations from
a given dialect D to other operations from the same dialect. This can be useful
when writing passes such as function call inlining and constant propagation. On
the other hand, a lowering pass rewrites operations from a dialect D1 to oper-
ations from another dialect D2. As the name implies, lowering passes are often
used to lower the level of abstraction of the IR so as to enable new kinds of
optimizations and rewriting techniques.

After all the required transformation and lowering passes have been run on
the input code, the resulting IR can now be used to emit code, be it executable
machine code, LLVM IR or higher-level source code. This translation phase
makes use of a user-provided backend which is in charge of traversing the MLIR
representation and emitting corresponding target instructions.



Modeling Stencils in a Multi-Level Intermediate Representation 7

3 Designing a stencil intermediate representation

The capabilities offered by MLIR make it a good candidate for developing
domain-specific intermediate representations. This section presents our attempt
at modeling common concepts found in stencil kernels and integrate them in a
compiler IR. More specifically, section 3.1 presents some key concepts of stencil
computations and how they are modeled inside our IR and section 3.2 gives a
brief overview of our IR’s syntax. The following sections present the transforma-
tion and lowering passes we have implemented (section 3.3) and the last section
(section 3.4) takes a look at the code generation backend.

3.1 Key concepts

Our stencil intermediate representation is inspired by the concepts expressed in
a domain-specific language designed by MeteoSwiss for their production-ready
climate and weather simulation model [17]. However, some of the ideas that it
expresses are generic and are not tied to the field of climate science, making
them applicable to a wide range of stencil-based computational workflows. The
following paragraphs describe each core element of our stencil IR.

Data types. To represent stencil computations, we will need two custom data
types, namely fields and offsets. A field represents a 2-or 3-dimensional grid
containing values of a given base type. This base type can be any of the following:
i1 (boolean value), i16/32/64 (integer value of a given width) or f16/32/64

(half, single and double-precision floating-point numbers). Offsets are used when
reading a particular cell inside the grid to indicate its relative position to the
current cell.

Basic operations. Our IR provides usual arithmetic (add, sub, mul, etc.), com-
parison (le, gt, eq, etc.) and boolean (and, or, etc.) operations. We also intro-
duce some convenience operations to compute the minimum and maximum of
two values, as well as the square root of a floating-point number.

Control flow. A stencil kernel is executed iteratively on each cell of an input
domain. The only control-flow operation that we need is a conditional branching
operation. We define it in the form of a high-level if construct, to which we
attach a code region for the then part of the operation and one for the else part.
The use of regions (brace-delimited code blocks) allows us to have a much higher-
level representation of such an operation, compared to the use of conditional
jumps and labels in the LLVM IR.

Vertical regions. Many stencil codes operating on a 3-dimensional grid require
the same operations to be executed for each layer in the grid. We introduce the
concept of a vertical region, on operation returning no results and wrapping a
region of the IR to be executed for each grid layer. Later on, this operation is
lowered to a loop on the vertical axis.



8 Jean-Michel Gorius

Execution context. To support the use of vertical regions on variable size do-
mains, we provide an operation that enables access to the execution environment
of the stencil code. This operation makes it easier for the user to define runtime
constants and to access them inside the IR without having to explicitly know
their values. A typical use case for such instruction is to retrieve the bounds of
a vertical region in a stencil code designed to run at different grid resolution
levels.

Field operations. Stencil computations sometimes require the use of a tempo-
rary field to store intermediate values defined for the entire iteration domain.
The temp operation allocates such a field and implicitly marks it as temporary.
Optimization passes can then make use of this information to promote the tem-
porary field to a regular field or chose to inline the computations. This can in
turn be used to optimize the overall memory layout of the stencil computa-
tion [4]. We also provide a read operation taking a field F and an offset (i, j)
as a parameter and returning the value of F (i0 + i, j0 + j), where (i0, j0) is the
current location in the iteration space. Additionally, a write operation, taking
a field F and a value v, writes the latter to F (i0, j0).

Function calls and global variables. The last set of operations included in our
stencil IR includes function calls (call operation) and global variable handling.
Global variables are used extensively in stencil code to share state between
different stages of the same stencil kernel. Stages are usually used to split a
computation into successive passes, structuring the code and avoiding some
data races. We provide three operations for global variable handling, namely
declare global, set global and get global.

The operations described above form the basis of complex stencil kernels
used, for example, in climate and weather simulation applications.

3.2 Quick syntax overview

This section gives a brief overview of the syntax of our intermediate represen-
tation. We will use the example of the 2-dimensional Jacobi stencil described
in section 1.1 to illustrate the syntax of the IR. For the sake of the example,
we will iterate this stencil for each layer in a 3-dimensional domain whose ver-
tical extent is only known at runtime. The bounds of the vertical domain will
be named kstart and kend. Figure 5 shows the MLIR code representing the
computation expressed in equation 2. The stencil prefix in front of operations
and the !stencil prefix in front of types indicates that those are part of the
same dialect, namely the stencil dialect.

The first lines (up to line 17) define the @jacobi function. The attached
attribute on line 2 specifies that it is a stencil.function, which means that
it can be called from a regular function to compute a value at a given point in
the grid. The definition itself is a straightforward translation of equation 2. Note
that the function operates on a field containing double-precision floating-point



Modeling Stencils in a Multi-Level Intermediate Representation 9

numbers (f64) and that it returns an f64. The type annotations following some
of the operations are used by the integrated type checker to ensure that the
operations are applied to well-typed arguments.

1 func @jacobi(%G: !stencil<"field:f64">) -> f64

2 attributes {stencil.function} {

3 %off0 = stencil.constant_offset 1 0 0

4 %off1 = stencil.constant_offset -1 0 0

5 %off2 = stencil.constant_offset 0 1 0

6 %off3 = stencil.constant_offset 0 -1 0

7 %0 = stencil.read(%G, %off0) : f64

8 %1 = stencil.read(%G, %off1) : f64

9 %2 = stencil.read(%G, %off2) : f64

10 %3 = stencil.read(%G, %off3) : f64

11 %cst = stencil.constant 0.25 : f64

12 %4 = stencil.add(%0, %1) : f64

13 %5 = stencil.add(%4, %2) : f64

14 %6 = stencil.add(%5, %3) : f64

15 %res = stencil.mul(%6, %cst) : f64

16 return %res : f64

17 }

18

19 func @jacobi_stencil(%in: !stencil<"field:f64">,

20 %out: !stencil<"field:f64">) {

21 %kstart = stencil.context "kstart" : i64

22 %kend = stencil.context "kend" : i64

23 stencil.vertical_region(%kstart, %kend) {

24 %val = stencil.call @jacobi(%G) : (!stencil<"field:f64">) -> f64

25 stencil.write(%out, %val) : f64

26 }

27 return

28 }

Fig. 5: Expressing a simple Jacobi stencil in our intermediate representation.

The stencil kernel is defined from line 19 to line 28. It defines a function
taking two fields as arguments. The first one is the input field and the second
one is the output field. The bounds of the vertical domain are retrieved by
the stencil.context operations on lines 21–22 and are then used to define a
vertical region on line 23. The value %val is computed at each point of the domain
and written to %out. Type annotations, namely the function type attached to
stencil.call and the value type attached to stencil.write are used to ensure
type-correctness.



10 Jean-Michel Gorius

3.3 Transformation and lowering passes

In addition to defining the syntax and semantics of the stencil operations in our
MLIR dialect, we implemented a few transformation and lowering passes. This
section gives an overview of those passes and presents the overall compilation
pipeline, from a stencil DSL to a relatively low-level intermediate representation
suited for conversion to C code.

The overall compilation pipeline is depicted in figure 6. We take a stencil
DSL source file as an input and translate it to an IR file. The DSL we use is
the one developed by MeteoSwiss and used in conjunction with their gtclang

frontend, which is based on LLVM clang. We adapted it to output MLIR code.

gtclang-mlir
frontend

Stencil	IR	fileStencil	DSL
source	file

Function	call
inlining

Vertical	region
splitting

Vertical	region	to
loops

Stencil	to
C

Stencil	IR	transformation	and	lowering	pipeline

Fig. 6: The stencil DSL compilation pipeline.

The resulting MLIR source file is processed through a series of transfor-
mation and lowering passes. Those passes do jot perform any kind of complex
optimizations and are only aimed at generating correct executable C code. The
implementation of optimization passes will be the subject of future work on
this project. The following paragraphs give more details about each individual
pass. The passes are presented in the order in which they are executed by the
compilation infrastructure.

Function call inlining. The first pass takes care of inlining every function call
appearing in the source code. This enables us to get rid of the functions anno-
tated with the stencil.function attribute and to generate a monolithic stencil
kernel. We take a naive approach and inline every function call recursively, but
future versions of our stencil IR compiler might want to introduce a cost model
to direct the inlining choices.

Vertical region splitting. The execution of a stencil on a vertical domain may
cause data races due to data-dependency relations between read and write op-
erations. To avoid these kind of interference, we split any given vertical region



Modeling Stencils in a Multi-Level Intermediate Representation 11

after each write operation it contains. The result of this transformation is illus-
trated in figure 7. The values required to compute the value argument to each
write operation are copied to the newly created vertical regions to ensure that
they are available in the current scope.

1 stencil.vertical_region(%k0, %k1)

2 {

3 // ...

4 stencil.write(%out0, %0): f64

5 // ...

6 stencil.write(%out1, %1): f64

7 }

(a) Before splitting.

1 stencil.vertical_region(%k0, %k1)

2 {

3 // ...

4 stencil.write(%out0, %0): f64

5 }

6 stencil.vertical_region(%k0, %k1)

7 {

8 // ...

9 stencil.write(%out1, %1): f64

10 }

(b) After splitting.

Fig. 7: Splitting vertical regions to avoid data races.

Vertical region to loops. Following the splitting of vertical regions, we introduce
a lowering pass. This pass takes vertical regions as an input and outputs affine
loops. Affine loops are loop constructs defined in the MLIR affine dialect. They
represent for loops with affine upper and lower bounds and a constant step. By
lowering to these operations, we are able to take advantage of the polyhedral
compilation concepts integrated into MLIR. Polyhedral compilation techniques
can be used to optimize loops by performing data-dependency analyses and
adapting loop bounds to expose parallelism [14]. The lowering to affine loops
also ensures that the loop bounds in the horizontal dimensions are correct with
respect to the elements read by the computational kernel. If necessary, it extends
the loop bounds to account for boundary conditions in the access patterns.

Stencil to C. The final lowering pass converts our stencil IR operations as well
as the affine loops introduced in the preceding pass to a C MLIR dialect. The C
dialect implements a small subset of the features of the C language and expresses
them in MLIR syntax. We use this dialect as a bridge between our high-level
stencil operations and the C code generation backend described in the next
section. This allows us to map each stencil construct to a set of C operations
without having to do this transformation during the translation pass run by the
code generation backend.

The use of successive transformation and lowering passes is very similar to
the way the LLVM optimizer transforms LLVM IR. It makes it easier to develop,



12 Jean-Michel Gorius

debug and test each pass individually. The development speed is also increased
by the use of a human-readable textual intermediate representation.

3.4 Translation to C code

We provide a custom code generation backend that takes an MLIR C dialect
as an input and outputs corresponding C code. The code we generate makes
used of a very small subset of C which is sufficient to express the computations
involved in stencil kernels. The generated C code is then plugged into a GridTools
wrapper. This allows us to run the produced stencil C code and test it against
the output of a reference implementation written using the GridTools embedded
DSL. The next section provides some insights into the results of those tests.

4 Validation

In this section, we show that our stencil IR can express most of the constructs
used in a production-level DSL. Section 4.1 looks at the test coverage of our
implementation by using the gtclang test suite and section 4.2 discusses the
applicability of our approach to express and transform production-ready climate
simulation code.

4.1 Test coverage

Our code generation backend adds a GridTools wrapper around our stencil C
code. This allows us to easily integrate our compilation pipeline in the gtclang

test suite and to compare the output of our stencils to the one produced by
the unmodified MeteoSwiss DSL compilation pipeline. We use the latter as a
reference to assert the correctness of our code generation and to assert the extent
of our feature coverage.

We achieve a feature coverage of about 90% with respect to available DSL
features in gtclang. These results were obtained by compiling our generated
code and comparing its output to the gtclang code generation test cases. We
estimate that less than a week of work would be needed to get a feature-complete
implementation of a stencil intermediate representation. As a side note, our
experiments allowed us to uncover two bugs in the MeteoSwiss DSL compiler.

4.2 COSMO dynamic core

In addition to testing our compiler toolchain against the gtclang test suite, we
also compiled parts of the COSMO dynamical weather model. The Consortium
for Small-scale Modelling (COSMO) develops a weather model for local weather
prediction and climate simulation. This model is used in eight countries to pro-
vide accurate local-level climate simulation for weather forecast and simulation
purposes.



Modeling Stencils in a Multi-Level Intermediate Representation 13

The COSMO model integrates a dynamical core which is used to run stencil
computations on weather and climate data. This dynamical core is comprised
of 37 stencil kernels. At the time of this writing, we can compile eight of those
kernels and successfully run six of them. The remaining 29 kernels all make use
of yet unimplemented features, but we plan to support all of them in the very
near future.

5 Conclusion and future work

Stencil computations are at the core of numerous numerical applications for
which domain-specific languages have been extensively developed. In this report,
we showed that we can drastically increase code reuse between those different
stencil DSL implementations by making use of a shared compiler intermediate
representation and shared optimization passes. MLIR makes it easy to develop
new intermediate representations targeted at domain-specific applications. We
showed that one can implement a nearly feature-complete stencil IR in a small
time frame and that it can be used to run parts of a production-level stencil
codebase.

We plan to continue working on this project so as to achieve feature com-
pleteness and full test coverage. Additionally, we started to work closely with
MeteoSwiss and the CSCS to develop an interoperability layer between our sten-
cil intermediate representation and their custom DSL compiler toolchain. This
would allow us to compile and run the entire COSMO dynamical core set of
stencils.

Acknowledgements

This work would not have been possible without the collaboration of Nicolas
Chappe (ENS Lyon, France), with whom we developed the IR and who adapted
gtclang to our needs. We would like to thank Tobias Grosser and Tobias Gysi
(SPCL, ETH Zurich, Switzerland) for their guidance and advice on this project.
We would also like to thank Carlos Osuna, Tobias Wicki and Giacomo Serafini
(MeteoSwiss), Hannes Vogt (CSCS) and the MeteoSwiss and CSCS research
teams for their valuable feedback and advice. Their technical insights were of
great value during the course of this project.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore,
S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke,
M., Yu, Y., Zheng, X.: TensorFlow: A System for Large-Scale Machine Learn-
ing. In: 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16). pp. 265–283. USENIX Association, Savannah, GA (2016),
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf



14 Jean-Michel Gorius

2. Arbona, A., Artigues, A., Bona-Casas, C., Massó, J., Miñano, B., Rigo, A., Trias,
M., Bona, C.: Simflowny: A general-purpose platform for the management of phys-
ical models and simulation problems. Computer Physics Communications 184(10),
2321–2331 (oct 2013). https://doi.org/10.1016/j.cpc.2013.04.012

3. Arbona, A., Miñano, B., Rigo, A., Bona, C., Palenzuela, C., Artigues, A., Bona-
Casas, C., Massó, J.: Simflowny 2: An upgraded platform for scientific modelling
and simulation. Computer Physics Communications 229, 170–181 (aug 2018).
https://doi.org/10.1016/j.cpc.2018.03.015

4. Bianco, M., Cumming, B.: A Generic Strategy for Multi-stage Stencils. In: Lecture
Notes in Computer Science, pp. 584–595. Springer International Publishing (2014).
https://doi.org/10.1007/978-3-319-09873-9 49

5. Bianco, M., Varetto, U.: A Generic Library for Stencil Computations. CoRR (2012)
6. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: An

efficient method of computing static single assignment form. In: Proceed-
ings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages. POPL ’89, ACM Press, New York, NY, USA (1989).
https://doi.org/10.1145/75277.75280

7. Ford, W.: Numerical Linear Algebra with Applications. In: Ford, W. (ed.) Nu-
merical Linear Algebra with Applications, chap. 20, pp. 469–490. Elsevier, Boston
(2015). https://doi.org/10.1016/c2011-0-07533-6

8. Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Pear-
son (2002), http://cmuems.com/excap/readings/forsyth-ponce-computer-vision-a-
modern-approach.pdf

9. Gysi, T., Osuna, C., Fuhrer, O., Bianco, M., Schulthess, T.C.: STELLA: A Domain-
specific Tool for Structured Grid Methods in Weather and Climate Models. In: Pro-
ceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis. SC ’15, ACM Press, New York, NY, USA (2015).
https://doi.org/10.1145/2807591.2807627

10. Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M., Vlkel, S.: Design
Guidelines for Domain Specific Languages. CoRR (2014)

11. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong pro-
gram analysis & transformation. In: International Symposium on Code Gener-
ation and Optimization, 2004. CGO ’04, IEEE, Washington, DC, USA (2004).
https://doi.org/10.1109/cgo.2004.1281665

12. Lattner, C., Shpeisman, T.: MLIR: Multi-Level Intermediate Repre-
sentation for Compiler Infrastructure. EuroLLVM 2019 (Apr 2019),
https://llvm.org/devmtg/2019-04/slides/Keynote-ShpeismanLattner-MLIR.pdf

13. Opršal, I., Zahradńık, J.: Elastic finite-difference method for irregular grids. GEO-
PHYSICS 64(1), 240–250 (jan 1999). https://doi.org/10.1190/1.1444520

14. Pugh, W.: Uniform Techniques for Loop Optimization. In: Proceedings of the 5th
international conference on Supercomputing. pp. 341–352. ICS ’91, ACM Press,
New York, NY, USA (1991). https://doi.org/10.1145/109025.109108

15. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe,
S.: Halide: A Language and Compiler for Optimizing Parallelism, Locality, and
Recomputation in Image Processing Pipelines. In: Proceedings of the 34th ACM
SIGPLAN conference on Programming language design and implementation. ACM
Press, New York, NY, USA (2013). https://doi.org/10.1145/2491956.2462176

16. Roth, G., Mellor-Crummey, J., Kennedy, K., Brickner, R.G.: Compiling sten-
cils in high performance Fortran. In: Proceedings of the 1997 ACM/IEEE
conference on Supercomputing. ACM Press, New York, NY, USA (1997).
https://doi.org/10.1145/509593.509605



Modeling Stencils in a Multi-Level Intermediate Representation 15

17. Thaler, F., Hoefler, T., Moosbrugger, S., Osuna, C., Bianco, M., Vogt, H.,
Afanasyev, A., Mosimann, L., Fuhrer, O., Schulthess, T.C.: Porting the COSMO
Weather Model to Manycore CPUs. In: Proceedings of the Platform for Advanced
Scientific Computing Conference. PASC ’19, ACM Press, New York, NY, USA
(2019). https://doi.org/10.1145/3324989.3325723


